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Disclaimer

This report summarizes the results of a study funded by and conducted for the U.S. 
Environmental Protection Agency (EPA) to evaluate uncertainty associated with emissions 
factors. This report has been reviewed by the Office of Air Quality Planning and Standards of the 
U.S. EPA, and approved for publication. Mention of trade names or commercial products is not 
intended to constitute endorsement or recommendation for use. 
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Executive Summary 

What is an emissions factor? 

An emissions factor is a numerical value that 
represents the quantity of a pollutant released to 
the atmosphere with an activity associated with 
the release of that pollutant. These factors are 
usually expressed as the weight of pollutant 
divided by a unit weight, volume, distance, or 
duration of the activity emitting the pollutant 
(e.g., kilograms of particulate emitted per 
megagram of coal burned). Such factors 
facilitate estimation of emissions from various 
sources of air pollution. In most cases, these 
factors are simply averages of all available data 
of acceptable quality and are generally assumed 
to be representative of long-term averages for all 
facilities in the source category (e.g., a 
population average).  

The general equation for emissions 
estimation is 

E =
100

1
ER

EFA  

where 
E = Emissions 
A = Activity rate 
EF = Emissions factor 
ER = Overall emissions reduction 

efficiency, %. 
 

Emissions factors are typically expressed as an 
average (mean) value of a distribution of emissions 
data. Emissions factors were initially intended for 
estimating emissions for a large number of sources 
(e.g., a national inventory). In many cases, 
emissions factor use has expanded beyond the 
original purpose, including determination of permit 
(or rule) applicability (i.e., calculating emissions 
from a specific source to determine whether the 
source meets the emissions threshold for a permit or 
rule to apply); input to a site-specific risk 
assessment; and calculation of emissions for 
trading. 

What is uncertainty? 

According to the North American Research 
Strategy for Tropospheric Ozone (NARSTO), 
uncertainty is the lack of knowledge regarding the 
true value of a quantity. Uncertainties are often 
expressed as probability distributions; two common 
distributions are the probability density function 
(PDF) and the cumulative distribution function 
(CDF). In the context of this report, uncertainty is 
an all-encompassing term that includes the effects 
of bias or systematic error, random error, and 
variability or how a quantity differs over time, 
space, or members of a population (NARSTO 
2005). 

Objective 

The objective of this study is to assess the uncertainty of the best rated emissions factors for 
categories of pollutants. Because uncertainty can be expressed as a probability distribution, the study 
used statistical procedures to determine the appropriate distribution and to calculate expected 
emissions factor values at various percentiles. Finally, the study presents uncertainty values expressed 
as ratios of expected emissions factor values at a given percentile and the average emissions factor 
values (as reported in AP-42). 
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What is an easy way to express emissions factor 
uncertainty? 

A convenient way to describe emissions 
factor uncertainty is to calculate the ratio of the 
expected emissions factor value at a specific 
percentile (as found using the appropriate 
statistical techniques) to the emissions factor 
value reported in AP-42. The emissions factor 
uncertainty ratio can be found using the 
following equation: 

EFuncertainty ratio = 
EF

EF statistic target

where 

 EFtarget statistic = Target population value 
of the emissions 
distribution (e.g., 95th 

percentile) in units of the 
AP-42 emissions factor 

 EFuncertainty ratio =  Estimate of the emissions 
factor uncertainty, 
unitless 

 EF  =  Emissions factor, as 
presented in AP-42, in 
units of the AP-42 
emissions factor 

What analyses were conducted during this 
study? 

We analyzed the data for 43 A-rated and 
1 B-rated AP-42 emissions factors for 
particulate matter (PM), sulfur dioxide (SO2), 
nitrogen oxides (NOx), carbon monoxide (CO), 
and hazardous air pollutants (HAPs). A 
statistical analysis based on a Monte Carlo 
simulation technique was conducted on each of 
the emissions factor datasets to simulate the 
population of the emissions factor for the 
specific pollutant. The simulated population was 
repeatedly sampled, again using a Monte Carlo 
simulation technique, to obtain probability 
distributions of emissions factors based on 
various sample sizes n (e.g., n = 3, 5, 10, or 25 
emissions tests), where an emissions test 
consists of generally three valid sample runs. As 
previously mentioned, one can view the full 
range of expected values of emissions factors 

and compare each one to the mean value, which is 
reported in AP-42. Emissions factor uncertainty 
ratios were calculated for each emissions factor 
dataset for various values of n. The emissions factor 
uncertainty ratios for each pollutant type and for 
similar values of n were combined to provide a 
series of composite emissions factor uncertainty 
ratios. 

What are the results? 

We have developed emissions factor 
uncertainty ratios based on target statistics of the 
population distribution of the emissions factor. We 
calculated emissions factor uncertainty ratios for 
numerous target statistics (e.g., 10th, 25th, 75th, 90th, 
95th percentiles) and values of n, where n equals the 
number of emissions tests used to determine the 
emissions factor. As expected, a consistent pattern 

emissions tests (n) increases, the value of the 
emissions factor uncertainty ratio decreases. The 
emissions factor uncertainty ratio increases as the 
variability of the emissions factor data increases. 

The data for HAP emissions factors exhibit the 
highest degree of variability and result in the largest 
emissions factor uncertainty ratios. As an example, 
the composite emissions factor uncertainty ratios to 
calculate the 95th percentile of the distribution are 
presented in the following table. 

Example emissions factor uncertainty ratios  
at the 95th percentile 

Number of Emissions 
Tests Used to 

Determine AP-42 
Emissions Factor 

Pollutant n < 3 n > 25 

HAP 13 3.9 

PM-condensable 6.9 3.6 

PM-filterable, controlled 3.9 2.7 

PM-filterable, uncontrolled 2.7 2.2 

Gaseous criteria pollutants 5.4 2.8 

HAP = hazardous air pollutant 
PM = particulate matter 
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1.0 Introduction 
The U.S. Environmental Protection Agency (EPA) and its predecessors have used 

emissions factors since 1968 to quantify emissions from point and area sources. The emissions 
factors and descriptions of sources to which the emissions factors apply can be found in the 
compendium report, Compilation of Air Pollutant Emissions Factors, AP-42, Fifth Edition, 
Volume I: Stationary Point and Area Sources, which is often referenced as AP-42 (U.S. EPA, 
1995). The AP-42 emissions factors are generally based on the average or the mean of the 
supporting emissions data. Over time, the number of source types presented in AP-42 has 
expanded, and as better and additional data have become available, EPA has revised and updated 
emissions factors. In 1990, EPA expanded the list of pollutants presented in the AP-42 sections 
to include the hazardous air pollutants (HAPs) identified in the 1990 Clean Air Act 
Amendments, as well as pollutants that may significantly influence global climate change. 

In support of emissions factors development, EPA has and continues to collect test data, 
evaluate the quality of supporting data, and revise the various chapters and sections of AP-42. 

the development of the national trends emissions inventory and other inventories used for state 
and regional implementation plans. 

During the past 10 years, the number of programs that use emissions factors has 
increased beyond the intended and supported national emissions inventory program use. In 2003, 
EPA began a complete re-evaluation of the emissions factor program. Part of this re-evaluation 
includes identifying ways to make the program more responsive to the broad and diverse range 
of emissions factors users, providing science-based recommendations on adapting emissions 
factors to achieve different program goals, characterizing the deficiencies of using emissions 
factors by quantifying the uncertainties associated with their use, and providing users with 
alternative methods of quantifying emissions to reduce the levels of uncertainty and increase 
user accountability. 

The objective of this study is to assess the uncertainty of the best-rated emissions factors 
and to develop emissions factor uncertainty ratios for a range of probability levels. This study 
does not attempt to evaluate or provide guidance on the application of emissions factor 
uncertainty in making environmental decisions. How emissions factor uncertainty affects or can 
be incorporated into such decision making necessarily must reflect the needs of affected 
stakeholders consistent with various program objectives. We intend that the study results will 
inform that process. 
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1.1 Background and Terminology 

1.1.1 Background 

The National Research Council (NRC) of the National Academies, Committee on Air 

Management (AQM) system has not developed a comprehensive program to track emissions and 
emissions trends accurately, and as a result, is unable to verify claimed reductions in pollutant 

The 
NRC proposes that EPA should lead a coordinated effort with state, local, and Tribal air quality 
agencies to improve the current system of tracking emissions and their reductions in time. The 
NRC recommends basing emissions inventories on emissions measurements whenever possible, 
and incorporating more formal uncertainty analysis in the presentation and use of inventories. In 

to emissions measurements, emissions factors, and estimation methods (U.S. EPA, 2004a). 
Among these recommendations are that EPA, in conjunction with state, local, Tribal agencies 
and affected stakeholders, improve emissions factors and emissions estimation methods where 
emissions measurement-based information is impractical to obtain for air quality assessments, 
and quantify and take actions to reduce uncertainty in emissions inventories, provide guidance, 
and improve communication of uncertainty to decision makers.  

Quantifying air emissions is a vital aspect of air pollution programs. Regulatory 
authorities and others use emissions values in (1) developing emissions inventories, 
(2) identifying and evaluating control strategies, (3) determining applicability of permit and 
regulatory requirements, and (4) assessing risks. In the absence of direct measures, emissions 
factors are frequently used as a quick, low cost way to estimate emissions values.
2006) 

The uncertainty of emissions values used in these applications is important to decision 
makers. Uncertainty results from a lack of knowledge about the true value of a quantity. 
Uncertainties are often expressed as probability distributions; the probability density function 
(PDF) and cumulative distribution function (CDF) are two common distributions (defined in 
Section 1.1.2). In the context of this report, uncertainty is an all-encompassing term that includes 
the effects of bias or systematic error, random error, and variability or how a quantity differs 
over time, space, or members of a population (NARSTO 2005). An effective approach towards 
reducing uncertainty is to obtain more knowledge (e.g., additional information about the source 
or quality of the data, additional data, site-specific emissions data, and or continuous emissions 
monitoring data).  

EPA uses a subjective rating system for the AP-42 emissions factors; they are assigned a 

on the amount and the representative characteristics of those data (e.g., how well the data 
represent the emissions source category). For example, A-rated emissions factors are calculated 
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using highly rated source test data from many randomly chosen facilities in the industry. A-rated 
factors are considered excellent. On the other hand, E-rated emissions factors are calculated 

facilities tested do not represent a random sample of industry. There may also be evidence of 
excessive or poorly represented variability within the source population. E-rated factors are 
considered poor. 

This current rating system does not provide a quantitative assessment of uncertainty. 

The current rating system for emissions factors does not provide the user with a tool to 
adjust an emissions factor based on use. An emissions factor tool that quantifies uncertainty 
would provide users with valuable information for adjusting the emissions factor, as 
appropriate; taking into account the level of uncertainty during calculations can give a user a 
better understanding of the variations between actual emissions and emissions factors 
calculations. The uncertainty tool could allow the user to select an appropriate adjustment 

(U.S. EPA, 2006) 

As an example, consider an emissions factor (based on the mean value of the emissions 
test data), which is 100 pound (lb)/ton of product, but when accounting for the uncertainty of the 
emissions factor, the probable range of emissions is estimated to be 50 to 220 lb/ton. With this 
uncertainty information, the user could select an emissions factor value that better supports the 
decision to be made. For instance, if the intended use is for a national emissions estimate 
comprised of a large number of sources, the user could choose the emissions factor or a value 
toward the middle of the range because of the likelihood that overestimates and underestimates 
would tend to cancel each other out. On the other hand, if the intended use is to determine 

requirement, the user could select near the upper end of the range to reduce the chance that a 

evidenced from results of subsequent emissions testing showing measured emissions in excess of 
emissions estimated using the selected emissions factor.  

During the past 10 years, a significant amount of work was conducted in relation to 
assessing the uncertainty of emissions estimates. A majority of this work focused on assessing 
and improving the uncertainty of emissions inventories. The North American Research Strategy 
for Tropospheric Ozone (NARSTO) recently published the document Improving Emission 
Inventories for Effective Air Quality Management Across North America (2005), which provides 
detailed information related to assessing the uncertainty in inventories. Chapter 8 of the 

discusses the motivations for uncertainty analysis, basic terminology and conceptual aspects, and 
methods for performing quantitative uncertainty analyses of emissions inventory information. 

emissions inventories, whereas the focus of this study is not limited only to the uncertainty of 
emissions inventories due to using emissions factors. Nonetheless, the NARSTO report provides 
an excellent overview and discussion of terminology and methods, as well as a framework for 
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emissions inventory analysis. Within the discussion of the sources of uncertainty (Chapter 8) in 
the NARSTO report, the following is stated: 

within a category and the limited sample size of measurements give rise to random 
sampling errors in estimation of the mean emission factor. The average emission factor, 
which is typically based upon the small data set available when an emission inventory is 
developed, is therefore subject to uncertainty. If the emission inventory includes a large 
sample of specific units within a source category, then the uncertainty analysis should 
typically focus on uncertainty in the mean emission rate. However, if an emission 
inventory includes only one unit from a given source category, and if no site-specific 
emission data are available, then an assumption might be made that the individual unit is 
a random sample from the population of all similar units. In this latter situation, the 
distribution of inter-unit variability would be the appropriate estimate of uncertainty
(Emphasis added) (NARSTO, 2005)  

The primary focus of this study is assessing the uncertainty of emissions factors. Of particular 
concern is the uncertainty associated with emissions factors used to represent emissions from a 
single or limited number of sources. In particular, the study focuses on assessing the distribution 
of inter-unit variability as an estimate of uncertainty.  

1.1.2 Terminology 

The following section defines some of the statistical terms used in this report. 

Boundary statistic: Refers to lower or upper values of a probability distribution (e.g., the 
95th percentile).  

Cumulative distribution function (CDF): The CDF presents the relationship between 
cumulative probability and values of a random variable. The CDF gives the probability that the 
value of the variable is less than or equal to a specific number (e.g., the probability of observing 
a standard normal value greater or equal to 1.96 is 0.025). The CDF is useful for inferring 
specific numerical values in the data associated with determined levels of cumulative probability 
(e.g., the 50th and 95th percentiles). The CDF is often used to evaluate how well a model fits the 
data. 

Data visualization: Using graphical displays to show data characteristics, such as the 
range and skewness. During this study, we used several data visualization techniques, such as 
histogram and plot of the empirical CDF.  

Emissions factor: A numerical value that represents the quantity of a pollutant released 
into the atmosphere with an activity associated with the release of that pollutant; for example, 
lb of sulfur dioxide per million British thermal units (BTUs) of heat input. Where the AP-42 
published emissions factor is derived from emissions test results, the emissions factor typically is 
the mean value of the available data.  
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Emissions test: As used in this report, except where noted otherwise, it is a direct 
measure of pollutant mass emitted from a facility, the result of which is reported as the average 
of the measurements for multiple (at least three) contiguous test runs. For the statistical analyses 
conducted during this study, the random variable, n, denotes the number of emissions tests (not 
the emissions test runs) used to calculate the corresponding emissions factor.  

Emissions test run: The individual sample taken during an emissions test. An emissions 
test is typically comprised of three or more test runs.  

Emissions unit: A specific process source of emissions (e.g., the emissions from boiler 

Estimators: Functions of the data and are used to estimate population parameters (e.g., 
the sample average is an estimator for the population mean). 

Histogram: A graph of the frequency distribution in the form of a series of rectangles, 
each proportional in width to the range of values within a class and in height to the number of 
items falling in the class. 

 

0 1 2 3

0 

20 

40 

60 

Emissions, lb/mmBTU x 10 - 1
 

Figure 1-1. Example histogram. 

Mean: The arithmetic average value. The mean of a probability distribution is the 
expected average of all possible outcomes of the random variable. 

Median: A statistical term referring to the value (number) that divides numerically 
ordered data into two equal halves; half of the data values are smaller than the median and half 
of the values are greater than the median. Thus, the median has an associated cumulative 
probability of 0.50. The median is also referred to as the 50th percentile.  
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Monte Carlo simulation: Refers to a collection of stochastic techniques used to solve 

probability statistics to provide solutions for specific problems. In Monte Carlo simulation, the 
random selection process is repeated many times to create multiple scenarios. Each time a value 
is randomly selected, it forms one possible scenario and simulation. Together, these scenarios 
give a range of possible solutions, some of which are more probable and some less probable. In 
this study, we typically used 10,000 simulations. For each emissions factor evaluated, we 
simulated a hypothetical population based on a statistical parametric distribution. Also, we 
generated sampling distributions of emissions factors based on different values of n, the number 
of emissions tests.  

Normalized: A distribution is normalized by dividing each value in the distribution by the 
mean value of the distribution, resulting in a distribution with a mean value equal to 1. 

Percentile: Represented by any of 100 points spaced at equal intervals within the range of 
the variable, with each point denoting that percentage of the data lying below it (e.g., the 95th 

percentile denotes the numerical value of the data point below which 95 percent of the values lie 
and above which 5 percent of the values lie). 

Population parameter, population value, or population characteristic: Refers to an 
unknown value of a characteristic or parameter of the population or the probability distribution 
(e.g., mean and variance are characteristics and parameters of the population), and also are 
referred to as parameters of the PDF. 

Probability density function (PDF): The PDF presents the relationship between 
probability density and values of a random variable. The PDF denotes the probability that the 
variable takes a specific value. A PDF graph provides information on the central tendency, 
range, and shape of the distribution. The shape of the PDF provides insight regarding whether 
the distribution is symmetric or skewed.  

Probability distribution: A probability distribution quantifies the range of possible values 
of the random variable (e.g., emissions). Uncertainty often is expressed in the form of a 
probability distribution. Probability distributions can be presented in various ways, including as 
a PDF or a CDF. Figure 1-2 displays example PDF and CDF functions and presents examples of 
symmetric (normal) and skewed distributions. 
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Figure 1-2. Schematic of probability density function (PDF) and cumulative distribution 
function (CDF) for symmetric and asymmetric distributions. 

(Adapted from NARSTO, 2005; Appendix C) 

Sampling distribution: Refers to the distribution of a statistic (e.g., the mean) in all 
possible samples that can be chosen according to a sampling scheme. We used simulation 
techniques to create sampling distributions for means based on different sample sizes. The 
sampling distribution of the mean can be used as a basis for assessing uncertainty and comparing 
alternative procedures. We used the sampling distribution of means to create a sampling 
distribution of emissions factor uncertainty ratios. 

Simulated (hypothetical population): This consists of all the values randomly generated 
from a PDF. We used Monte Carlo techniques to generate hypothetical populations. 

Skewness: Refers to a departure from symmetry. The probability distributions of 
emissions factor data are typically skewed. In this study, we calculated the coefficient of 
variance (CV) as a measure of the skewness of each emissions factor dataset. The CV provides a 
relative measure of data dispersion compared to the mean. Probability densities frequently used 
to model skewed data include log-normal, Weibull, and Gamma distributions. During this study, 
we examined which parametric model best represented the emissions factor data.  

Source: The process source of emissions (e.g., wood-fired boiler.) The term source also 
may refer to a specific source of emissions (i.e., a specific wood-fired boiler at a specific facility, 
although a specific source of emissions is often referred to as an emissions unit).  
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Symmetric distribution: Refers to a distribution that is symmetric with respect to the 
mean value. For this type of distribution, the mean and median coincide. 

Target statistic: Refers to a population value or characteristic of interest. 

Uncertainty: Refers to the lack of knowledge regarding the true value of a quantity. In 
practice, uncertainties are often expressed in the form of a probability distribution.

Variability: Refers to heterogeneity of a quantity over time or members of a population. 
Variability may result, for example, from differences in design or operating conditions from one 
source to another (inter-source variability) and in operating conditions from one time to another 
at a given source (intra-source variability). 

1.2 Objective of Study

The objective of this study is to assess the uncertainty of the best-rated emissions factors 
and to develop emissions factor uncertainty ratios for a range of probability levels. This study 
does not attempt to evaluate or provide guidance on the application of emissions factor 
uncertainty in making environmental decisions. How emissions factor uncertainty affects or can 
be incorporated into such decision making necessarily must reflect the needs of affected 
stakeholders consistent with various program objectives. We intend that the study results inform 
that process. Finding the original emissions test data and other supporting information for an 
emissions factor is often a key difficulty in assessing uncertainty; furthermore, data availability 
may be limited (i.e., the emissions factor may be based on only a few emissions tests). 

This study investigates the development of emissions factor uncertainty ratios based on 
statistical analysis of emissions factor supporting data for a variety of emissions source types and 
pollutants for which we have well-documented multiple sets of emissions test data. This report 
also presents the statistical approach used to determine emissions factor uncertainty ratios, the 
results, and composite emissions factor uncertainty ratios.  

1.3 Report Organization 

This report discusses the statistical analyses conducted to generate emissions factor 
uncertainty ratios and presents the results of these analyses. Section 1.0 introduces the issue of 
using emissions factors, provides background information on uncertainty analysis and statistical 
terminology, and presents the objective of this study. Section 2.0 presents a summary of the 
results and conclusions. Section 3.0 presents the emissions factor data used in the statistical 
analyses, along with the rationale for selecting the datasets and the statistical approach used. 
Section 4.0 presents the statistical results, the emissions factor uncertainty ratios by pollutant and 
industry (i.e., source category), and the composite emissions factor uncertainty ratios. The 

used in the analyses, as well as more information on the statistical analyses and the results. 

 

Eric
Highlight

Eric
Highlight
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2.0 Summary of Results and Conclusions 
The technical approach established for this project comprises the following steps: 

1. Select and prepare initial emissions factor datasets for analysis. 
2. Establish the statistical procedures. 
3. Conduct statistical analyses of an emissions factor dataset for an industry and 

calculate preliminary emissions factor uncertainty ratios. 
4. Review the initial results and refine the analytical approach.  
5. Conduct statistical analyses of additional representative emissions factor datasets. 
6. Calculate composite emissions factor uncertainty ratios for the combined datasets. 
7. Consider alternative approaches and compare results to emissions factor uncertainty 

ratios. 
 

This report presents the results of the analyses and composite emissions factor 
uncertainty ratios. We calculated emissions factor uncertainty ratios for multiple pollutants from 
A-rated and B-rated emissions factor datasets from four industries; Section 2.1 presents a 
summary of the emissions factor data that were used. Based on an approach using boundary (or 
target) population statistics, we calculated emissions factor uncertainty ratios for each emissions 
factor and categorized the data by pollutant. For each pollutant type, we calculated average 
values that we used to derive composite uncertainty ratios. The value of the composite 
uncertainty ratio depends on the number of emissions tests1, n, used to support the reported 
emissions factor. Intuitively, the smaller the value of n, the larger the uncertainty ratio because 
there is more uncertainty that the emissions factor represents the emissions from the source 
category when there are fewer data available. 

For this study, we also calculated normalized Monte Carlo sampling distributions of the 
mean. These distributions may be used to predict confidence intervals for the population mean 
based on a sample of a specified size. The confidence intervals define lower and upper values for 
the uncertainty ratio if the goal is to target the mean of the population (e.g., for application to 
many identical units in an area, such as an emissions inventory for a specific area). Section 2.2 
presents a summary of composite emissions factor uncertainty ratios for a range of n values, 
including uncertainty ratios for population values of interest other than the mean (e.g., median, 
25th percentile, 75th percentile), and selected percentiles of the normalized Monte Carlo sampling 
distributions for the population mean. The complete results are discussed in Section 4.0. 

Figure 2-1 provides an overview of the statistical approach for developing the emissions 
factor uncertainty ratios. Section 3.0 and Appendix A present more information about the 
approach. 

                                                 
1 An emissions test consists of multiple sample runs (typically at least three valid sample runs). 
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Figure 2-1. Overview of the statistical approach. 

2.1 Emissions Factor Data  

For the statistical analysis, we identified datasets from the AP-42 background 
documentation for four source categories or industries. We selected these categories because the 
respective sections of AP-42 included data for multiple pollutants, both criteria and HAPs, and 
for each a significant amount of supporting data, including well-documented test reports. The 
criteria used to select datasets are detailed in Section 3.1. These datasets included supporting 
emissions data for the following pollutants: 

Particulate matter (PM), including filterable, condensable, and total 
 Sulfur dioxide (SO2) 
 Nitrogen oxides (NOx) 
 Carbon monoxide 
 HAPs, including acetaldehyde, arsenic, benzene, cadmium, chromium, 

formaldehyde, hydrogen chloride (HCl), lead, mercury, and nickel. 

Table 2-1 presents an overview of the emissions factors data selected for analysis, 
organized by pollutant. Data analyses have been completed for 43 A-rated and 1 B-rated 
emissions factors. Section 3.1 and Appendix B provide additional detailed information on these 
emissions factor data. Examination of the data for each of the emissions factor datasets indicates 
that the data are skewed and are best represented by either log-normal or Weibull probability 
distribution functions.  



Emissions Factor Uncertainty Assessment 
 

2-3 

Table 2-1. AP-42 Emissions Factors Datasets Listed by Pollutant 

Pollutant AP-42 Chapter Process/Fuel Type Control 

in Boilers (External Combustion Sources) 
All Fuels Uncontrolled/PM 

Control 

in Boilers (External Combustion Sources) 
All Fuels Uncontrolled/PM 

Control 

Waste Disposal) 
Mass Burn and Modular 
Excess Air 

Spray Dryer, Fabric 
Filter 

in Boilers (External Combustion Sources) 
All Fuels Uncontrolled/PM 

Control 

(Mineral Products Industry) 
Drum Mix, Natural Gas, 
No. 2 Fuel Oil, and Waste 
Oil 

Fabric Filter 

in Boilers (External Combustion Sources) 
All Fuels Uncontrolled/PM 

Control 

Waste Disposal) 
Mass Burn and Modular 
Excess Air 

Spray Dryer/ESP 

in Boilers (External Combustion Sources) 
Bark, Wet Wood, and Dry 
Wood 

Uncontrolled 

Waste Disposal) 
Mass Burn Waterwall Uncontrolled 

in Boilers (External Combustion Sources) 
All Fuels Uncontrolled/PM 

Control 

in Boilers (External Combustion Sources) 
All Fuels Uncontrolled 

PM-condensable 
(Inorganic) (Mineral Products Industry) 

Drum Mix Scrubber, Fabric 
Filter 

PM-condensable 
(Inorganic) (Mineral Products Industry) 

Batch Mix Fabric Filter 

PM-condensable 
(Organic) (Mineral Products Industry) 

Drum Mix Scrubber, Fabric 
filter 

PM-condensable 
(Organic) (Mineral Products Industry) 

Batch Mix Fabric Filter 

PM-filterable  Chapter 1.
in Boilers (External Combustion Sources) 

Wet Wood Uncontrolled 

Wood Residue Combustion 
in Boilers (External Combustion Sources) 

Dry Wood Uncontrolled 

Wood Residue Combustion 
in Boilers (External Combustion Sources) 

All Fuels Wet Scrubber 

Wood Residue Combustion 
in Boilers (External Combustion Sources) 

Wet Wood Mechanical 
Collector 

(continued)
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Table 2-1. (Continued) 

Pollutant AP-42 Chapter Process/Fuel Type Control 

Wood Residue Combustion 
in Boilers (External Combustion Sources) 

Dry Wood Mechanical 
Collector 

Strandboard (Wood Products Industry) 
Hot Press, PF/MDI Resins Uncontrolled 

(Mineral Products Industry) 
Drum Mix Fabric Filter 

(Mineral Products Industry) 
Batch Mix Fabric Filter 

Waste Disposal) 
Mass Burn and Modular 
Excess Air 

Duct Sorbent 
Injection/Fabric 
Filter 

Waste Disposal) 
Mass Burn and Modular 
Excess Air

Spray Dryer/ESP 

Waste Disposal) 
Mass Burn and Modular 
Excess Air

Spray Dryer/Fabric 
Filter 

Waste Disposal) 
Mass Burn and Modular 
Excess Air

Uncontrolled 

Waste Disposal) 
Mass Burn and Modular 
Excess Air 

ESP 

PM-Total 
(filterable) Waste Disposal) 

Refuse-derived Fuel ESP 

PM-Total 
(filterable) Waste Disposal) 

Refuse-derived Fuel Uncontrolled 

in Boilers (External Combustion Sources) 
All Fuels Uncontrolled/PM 

Control 

(Mineral Products Industry) 
Drum Mix, Natural Gas, 
No. 2 Fuel Oil, and Waste 
Oil 

Fabric Filter 

Hydrogen 
Chloride Waste Disposal) 

Mass Burn and Modular 
Excess Air 

Uncontrolled 

Hydrogen 
Chloride Waste Disposal) 

Mass Burn and Modular 
Excess Air 

Spray Dryer/Fabric 
Filter 

Lead 
Waste Disposal) 

Mass Burn and Modular 
Excess Air 

ESP 

Lead 
Waste Disposal) 

Mass Burn and Modular 
Excess Air 

Spray Dryer/ESP 

in Boilers (External Combustion Sources) 
All Fuels Uncontrolled/PM 

Control 

Waste Disposal) 
Mass Burn and Modular 
Excess Air 

Spray Dryer/Fabric 
Filter 

(continued)
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Table 2-1. (Continued) 

Pollutant AP-42 Chapter Process/Fuel Type Control 

in Boilers (External Combustion Sources) 
All Fuels 
 

Uncontrolled/PM 
Control 

Waste Disposal) 
Mass Burn and Modular 
Excess Air 

Spray Dryer/Fabric 
Filter 

Nitrogen 
oxides in Boilers (External Combustion Sources) 

Bark and Wet Wood Uncontrolled 

Nitrogen 
oxides Waste Disposal) 

Mass Burn Waterwall Uncontrolled 
 

in Boilers (External Combustion Sources) 
Bark and Wet Wood Uncontrolled 

Waste Disposal) 
Mass Burn and Modular 
Excess Air 

Uncontrolled 

ESP = electrostatic precipitator; PM = particulate matter; PF/MDI = phenol formaldehyde/methylene diphenyl 
diisocyanate. 

Section 3.2 provides detailed information on the characterization of the individual 
emissions factor datasets, the statistical procedures used to simulate a distribution of the 
population (from the sample derived from the AP-42 emissions factor data), and the statistical 
procedures used to calculate uncertainty ratios and normalized Monte Carlo sampling 
distributions of the mean. 

2.2 Composite Emissions Factor Uncertainty Ratios  

We developed emissions factor uncertainty ratios by different statistical approaches for 
single emissions unit applications and for multiple emissions unit applications. To account for 
situations that occur between these types of emissions estimation applications (e.g., for multiple 
emissions units at a single source), we interpolated between the results of the two statistical 
approaches to better estimate the uncertainty. 

Population percentiles (target statistic) approach. We calculated emissions factor 
uncertainty ratios to account for uncertainty when applying emissions factors for single 
emissions unit applications. The uncertainty ratio is a value by which the emissions factor is 
multiplied to estimate the desired statistic of the population, as shown in Equation 2-1. 

 
EF

EF
EF statistictarget

ratioyuncertaint (Eq. 2-1) 

 
where 
 

EFuncertainty ratio = Estimate of the emissions factor uncertainty, unitless 
EFtarget statistic  = Target population value of the emissions distribution, hereafter 

referred to as the target statistic (e.g., 95th percentile), in units of the 
AP-42 emissions factor  
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EF  =  Emissions factor, as presented in AP-42, in units of the AP-42 
emissions factor. 

 
Based on the statistical approach in Section 3.2, we calculated emissions factor 

uncertainty ratios for each emissions factor listed in Table 2-1. We calculated the uncertainty 
ratios for several population parameters of interest, including the 5th percentile, 10th percentile, 
25th percentile, median, mean, 75th percentile, 90th percentile, and the 95th percentile of the data 
distribution. The uncertainty ratios are a function of the number of tests, n, on which the 
emissions factor is based.  

We calculated the emissions factor uncertainty ratios for each dataset, and then we 
clustered them by type of pollutant and control (controlled vs. uncontrolled). Specifically, we 
clustered the uncertainty ratios as follows: 

 HAPs 
 PM-condensable 
 PM-filterable, controlled 
 PM-filterable, uncontrolled 
 Gaseous criteria pollutants. 

 
We calculated the mean value of the corresponding uncertainty ratios to determine 

composite emissions factor uncertainty ratios for each category of pollutant. Throughout the 
analyses conducted for this study, we calculated uncertainty ratios for the following values of n: 
1, 3, 5, 10, 15, 20, and 25. We calculated the composite uncertainty ratios for each of these n 
values. Examining the composite values indicates that for each of the pollutant categories, the 
uncertainty ratio values begin to stabilize when n is 10 or greater; furthermore, the composite 
uncertainty ratios for n = 5 and n = 10 are similar. One can provide uncertainty ratio values for 
selected intervals of n for each pollutant category. The intervals we selected are n < 3, 3  n <10, 
10  n < 25, and n  25. Table 2-2 presents the composite uncertainty ratios for HAP; PM-
condensable; PM-filterable, controlled; PM-filterable, uncontrolled; and gaseous criteria 
pollutants. 

Normalized sampling distributions (confidence intervals for the mean). We also 
calculated normalized sampling distributions of emissions factors (means) obtained from Monte 
Carlo techniques applied to the hypothetical populations. Table 2-3 presents selected percentiles 
for the normalized distributions for selected sample sizes n, composited by pollutant category. 
Observe that each normalized sampling distribution can be considered as the sampling 
distribution of the emissions factor uncertainty ratio statistic if the goal is to target the population 
mean. With these sampling distributions, it is possible to obtain confidence intervals (e.g., 90, 
95, 98, and 99 percent) for the uncertainty ratio value for the population mean. For example, a 
90-percent confidence interval for the uncertainty ratio to the mean has endpoints equal to the 5 th

and 95th percentiles of the normalized sampling distribution. These endpoints will define the 
lower and upper values of the selected confidence interval for the uncertainty ratio if the goal is 
to target the mean of the hypothetical distribution. Because these uncertainty ratios provide 
measures of uncertainty around the mean, they are smaller than the composite uncertainty ratios 
that target boundary statistics other than the mean of the population (e.g., 90th percentile). 
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Table 2-2. Composite Emissions Factor Uncertainty Ratios based on Population Percentiles 
(Based on Equation 2-1) by Target Statistic, Number of Emissions Tests, and Pollutant 

Number of Emissions Tests Used to Determine AP-42 Emissions Factor
Pollutant Target Statistic n < 3 3 < n < 10 10 < n < 25 n > 25

10th percentile 0.2 0.1 0.1 0.1 

25th percentile 0.4 0.3 0.2 0.2 

Median 1.0 0.6 0.5 0.5 

75th percentile 2.9 1.5 1.2 1.1 

90th percentile 7.7 3.6 2.7 2.4 

HAP 

95th percentile 13.4 6.0 4.3 3.9 

10th percentile 0.2 0.2 0.2 0.1 

25th percentile 0.5 0.3 0.3 0.3 

Median 1.0 0.7 0.6 0.6 

75th percentile 2.2 1.5 1.3 1.2 

90th percentile 4.4 3.0 2.5 2.4 

PM-condensable 

95th percentile 6.9 4.7 3.9 3.6 

10th percentile 0.4 0.3 0.3 0.3 

25th percentile 0.6 0.5 0.5 0.5 

Median 1.0 0.8 0.8 0.8 

75th percentile 1.7 1.4 1.3 1.2 

90th percentile 2.9 2.3 2.1 2.0 

PM-filterable, 
controlled 

95th percentile 3.9 3.1 2.8 2.7 

10th percentile 0.5 0.5 0.4 0.4 

25th percentile 0.7 0.6 0.6 0.6 

Median 1.0 0.9 0.9 0.9 

75th percentile 1.5 1.3 1.3 1.2 

90th percentile 2.2 1.9 1.8 1.8 

PM-filterable, 
uncontrolled 

95th percentile 2.7 2.3 2.2 2.2 

10th percentile 0.3 0.3 0.3 0.3 

25th percentile 0.6 0.5 0.5 0.5 

Median 1.0 0.8 0.8 0.8 

75th percentile 1.9 1.4 1.3 1.2 

90th percentile 3.5 2.5 2.1 2.0 

Gaseous criteria 
pollutants 

95th percentile 5.4 3.6 3.0 2.8 

HAP = hazardous air pollutant; PM = particulate matter. 
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Table 2-3. Composite Emissions Factor Uncertainty Ratios Based on Normalized Sampling 
Distribution of Emissions Factor (Mean)  

Number of Emissions Tests Used to Determine AP-42 Emissions Factor
Pollutant 

Distribution 
Statistic n < 3 3 < n < 10 10 < n < 25 n > 25
10th percentile 0.1 0.3 0.5 0.6 

25th percentile 0.2 0.4 0.6 0.2 

Median 0.5 0.7 0.8 0.9 

Mean 1.0 1.0 1.0 1.0 

75 th percentile 1.0 1.2 1.2 1.2 

90th percentile 2.2 2.0 1.7 1.5 

HAP 

95th percentile 3.5 2.8 2.1 1.7 

10th percentile 0.1 0.3 0.5 0.6 

25th percentile 0.3 0.4 0.6 0.8 

Median 0.5 0.7 0.9 0.9 

Mean 1.0 1.0 1.0 1.0 

75th percentile 1.1 1.2 1.2 1.2 

90th percentile 2.2 1.9 1.6 1.4 

PM-condensable 

95th percentile 3.3 2.6 2.0 1.6 

10th percentile 0.3 0.5 0.7 0.8 

25th percentile 0.4 0.6 0.8 0.8 

Median 0.7 0.8 0.9 1.0 

Mean 1.0 1.0 1.0 1.0 

75th percentile 1.2 1.2 1.1 1.1 

90th percentile 2.0 1.7 1.4 1.3 

PM-filterable, 
controlled 

95th percentile 2.7 2.1 1.7 1.4 

10th percentile 0.4 0.6 0.7 0.8 

25th percentile 0.6 0.7 0.8 0.9 

Median 0.8 0.9 1.0 1.0 

Mean 1.0 1.0 1.0 1.0 

75th percentile 1.2 1.2 1.1 1.1 

90th percentile 1.8 1.5 1.3 1.2 

PM-filterable, 
uncontrolled 

95th percentile 2.3 1.8 1.5 1.3 

10th percentile 0.4 0.5 0.7 0.8 

25th percentile 0.5 0.7 0.8 0.9 

Median 0.8 0.9 0.9 1.0 

Mean 1.0 1.0 1.0 1.0 

75th percentile 1.2 1.2 1.1 1.1 

90th percentile 1.8 1.5 1.3 1.2 

Gaseous criteria 
pollutants 

95th percentile 2.3 1.9 1.5 1.3 

Summary of the two statistical approaches taken. We applied two different statistical 
approaches to develop emissions factor uncertainty ratios. The first approach targets boundary 
statistics of the hypothetical population and is appropriate for consideration when applying 
emissions factors to a single emissions unit. The second approach estimates uncertainty about the 
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mean of the population and is more appropriate for applying emission factors to many identical 
emissions units in an area (e.g., emissions inventory for a specific area). As expected, 
uncertainty ratios calculated using the first approach are greater because they target a boundary 
statistic (e.g., 90th percentile) of the hypothetical population for a single measurement, whereas 
the second approach calculates an uncertainty ratio that provides uncertainty measures 
(confidence intervals) for the mean. 

Some situations do not fall perfectly into one of these two categories, making it unclear 
which of the two uncertainty approaches may be most applicable. This is particularly true when 
estimating emissions from a small number of similar emissions units for purposes other than an 
area-wide inventory. One example might be estimating the total emissions from a facility with 
three similar boilers. Interpolation between the two uncertainty approaches may provide better 

involving a small number of emissions units should fall between the values calculated by the two 
approaches. One technique for addressing emissions factor uncertainty ratios for a multiple-
source situation is to start with the uncertainty ratio applicable to a single source and apply a 
correction to reduce the uncertainty ratio applied because emissions from multiple emissions 
units are being estimated. We outlined in Section 4.0 a practical, nonstatistical, procedure based 
on a linear interpolation of the difference in the uncertainty ratios from the two statistical 
approaches to develop correction factors when applying the uncertainty ratios for multiple 
process applications up to 10 sources (i.e., emissions units). For 11 or more sources or emissions 
units, the emissions factor uncertainty ratio is equivalent to the uncertainty ratio determined by 
the normalized sample distribution about the mean (i.e., the second statistical approach). These 
correction factors are discussed in Section 4.4. 

2.3 Consideration of Alternative Approaches  

During the course of this study, we and our peer reviewers discussed, considered, and to 
a limited extent, explored two other statistical approaches. One approach explored, which was a 
Bayesian approach, uses a different procedure to determine the hypothetical population 
distribution parameters to account for the uncertainty associated with the unknown population 
distribution. Statisticians may follow a frequentist approach or a Bayesian approach when 
analyzing data. In the frequentist approach, the model parameters are considered fixed quantities 
(population values) and uncertainty arises from estimating these population parameters using a 
finite collection of data. In the Bayesian approach, parameters are considered random variables 
and, instead of one population parameter, there is a population of possible parameters. 
Uncertainty in this case comes from the data and the distribution of the parameters. For three 
emissions factor datasets, uncertainty ratios were recalculated following a Bayesian approach. In 
this Bayesian approach, we considered appropriate distributions for the model parameters. The 
results of these analyses show little difference in the uncertainty ratios for two of the three 
datasets. The two approaches resulted in a larger difference for the third dataset. Section 3.2.3 
and Appendix F further discusses the results.  

We also considered a second alternative approach that addressed the application of 
emissions factors involving a small number of similar emissions units (e.g., three boilers at a 
single facility). As indicated in Section 2.2, we used two statistical approaches to calculate 
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emissions factor uncertainty ratios. The uncertainty ratios calculated by the first approach target 
a boundary statistic for application to a single source (emissions unit), while the uncertainty 
ratios calculated by the second approach target the uncertainty about the mean value of a large 
sample. During the review process for this report, a question arose about how to apply 
uncertainty ratio values for situations involving a small number of emissions units. As indicated 
in Section 2.2, we interpolated between the results of the two approaches to address uncertainty 
for situations involving a small number of emissions units. A commenter suggested and provided 
example calculations for another approach designed to address this situation. We reviewed the 
approach and example calculations provided, but we did not conduct any additional analysis 
because the approach is based on hypothetical populations and does not use the actual AP-42 
emissions data. This approach considers the following three sources of variability: the skewness 
of the distribution of emissions data, the number of tests comprising the emissions factor, and the 
number of emissions units for which emissions are being estimated. The approach consisted of 
sampling independently from each of the hypothetical populations to develop independent 

the other to represent actual emissions from the emissions units. To compare the calculated 
emissions factors and the actual emissions of the emissions units, the calculated emissions factor 
value was subtracted from the actual emissions unit value.  Nine independent sampling 
distributions were regenerated to represent actual emissions from nine different facilities having 
from one to nine similar emission units. Similarly, 20 sampling distributions were generated to 
represent calculated emissions factors developed from 1 to 20 emissions tests (i.e., n = 1 to 20). 
All combinations of differences between the nine sampling distributions, representing actual 
emissions from emission units, and the 20 sampling distributions, representing calculated 
emissions factor values were calculated. This approach simulates the distribution of the 
differences in emissions factors based on a different number of emissions units and emissions 
tests. The calculated differences were used to determine the emissions factor uncertainty ratio. 
Selected percentiles of the distribution of uncertainty ratios produced upper bounds for the 
emissions factor (mean). 

A relevant aspect of this approach is the incorporation of the uncertainty due to the 
differences between the number of tests that the emissions factor was based on and the number 
of emissions units. Also, this approach is based on the assumption that it is possible to model all 
the pollutants using one probability distribution with few varying parameters, which in some 
sense follows the finding from this project (i.e., that the pollutants considered were either 
Weibull or log-normally distributed). As expected, when the number of emissions units 
increases, and the number of tests, n, used to calculate the emissions factor increases, the 
difference between the actual emissions factor and the calculated emissions factor will tend to 
zero. Section 3.2.3 and Appendix G provides more details on this statistical approach. 

2.4 Conclusions  

In summary, we developed emissions factor uncertainty ratios based on boundary (target) 
statistics of the population for numerous target statistics and values of n. To simplify 
presentation of the data and application of the results, we reported uncertainty ratios for selected 
target statistics. To simplify, we also reported composite uncertainty ratios for selected intervals 
of n. We could develop a more extensive presentation of additional target statistics for use in an 
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electronic database or lookup table to provide a broader set of options, if needed. For 
applications where the target statistic of interest is the mean, such as for multiple emissions units 
in an area, the appropriate uncertainty ratio to use is a selected confidence interval (upper and/or 
lower confidence limits). We have calculated uncertainty ratios based on the normalized 
sampling distribution of the mean for n = 1 to 30. We could provide a more extensive 
presentation of additional confidence limits about the mean in an electronic database or lookup 
table implemented in a user-friendly Java applet to provide a broader set of options, if needed.  

With respect to characterizing the uncertainty associated with the use of emissions 
factors, the following general conclusions result from the analyses: 

 All of the emissions factor datasets examined are skewed and either Weibull or 
log-normally distributed. This is consistent with previous studies of emissions 
factor data.  

 A consistent pattern is shown for all of the pollutants. As the number of tests, n, 
increases, the values of the emissions factor uncertainty ratios decrease. This 
pattern holds for all of the pollutants, regardless of the number of tests available 
from the supporting emissions dataset or the control status (controlled vs. 
uncontrolled). 

 For each of the pollutant categories, the uncertainty ratio values nearly stabilize 
when n is 10 or greater. 

 There are some differences from pollutant to pollutant about the range of the 
emissions factor uncertainty ratios as a function of n. For some pollutants, 
regardless of the n value, the uncertainty ratio does not significantly change (e.g., 
PM-filterable, uncontrolled). For other emissions factor datasets, the uncertainty 
ratio varies more widely depending on the n value. 

 The HAP emissions factor data exhibit the highest degree of variability and result 
in the largest emissions factor uncertainty ratios.  
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3.0 Technical Approach 
First, the overall technical approach consists of selecting A-rated and B-rated emissions 

factor datasets for analysis and using exploratory data analysis techniques to visualize and 
characterize these datasets. Second, statistical techniques are applied to each of the selected 
emissions factor datasets to determine preliminary emissions factor uncertainty ratios. Third, 
emissions factor uncertainty ratios are calculated for combined datasets. During the course of the 
project, we explored or conducted several different statistical analyses. Section 3.1 describes the 
approach we used to identify and select emissions factor data for analysis and summarizes all the 
emissions factors analyzed. Section 3.2 describes the statistical analyses that we conducted on 
the emissions factor data and provides some example results for purposes of illustration. Section 
4.0 summarizes the results for all of the emissions factor data. 

3.1 Selection of Emissions Factor Data for Analysis  

AP-42 provides air pollutant emissions factors for many different stationary point and 
area source types. Each emissions factor represents an industry and emissions unit average. All 
AP-42 emissions factors can be retrieved from the Factor Information REtrieval (FIRE) Data 
System (U.S. EPA, 2004b). The FIRE database allows users to obtain records based on source 
category, source classification code, pollutant name, Chemical Abstracts Service (CAS) number, 
control device, and emissions factor rating. The supporting emissions data used to develop the 
emissions factors are also publicly available in the background documentation for each AP-42 
industry-specific section. These data are often summarized in table format and are sometimes 
available as an electronic data file. We used FIRE to sort and identify emissions factor datasets 
for analysis using the rationale and criteria identified in Section 3.1.1. After identifying potential 
datasets, we reviewed the AP-42 background files to determine whether the necessary data were 
readily available for analysis (i.e., electronic data files or concise table summaries of the test data 
used to calculate the emissions factor), and we selected the datasets to be analyzed.  

3.1.1 Rationale 

When selecting datasets for statistical analysis, we used rationale based on the following 
criteria: 

 The quality rating of the emissions factor 
 The quantity of emissions data used to develop the factors (i.e., number of 

emissions tests) 
 The number of pollutants included  
 The accessibility of the supporting emissions data. 

based on the quality of the supporting emissions test data and on both the amount and the 
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representative characteristics of those data (e.g., how well the data represent the emissions 
source category). AP-42 emissions factor ratings are assigned as follows (U.S. EPA, 1995, 

 A-rated emissions factors are calculated using highly rated source test data from 
many randomly chosen facilities in the industry; the source category population is 
sufficiently specific (e.g., with regard to fuel type) to minimize variability. A-
rated factors are considered excellent. 

 B-rated emissions factors are calculated using highly rated source test data from a 

represent a random sample of industry. As with A-rated factors, the source 
category is sufficiently specific to minimize variability. B-rated factors are 
considered above average. 

 C-rated emissions factors are calculated using source test data from a 

represent a random sample of industry. As with A- and B-rated factors, the source 
category is sufficiently specific to minimize variability. C-rated factors are 
considered average. 

 D-rated emissions factors are calculated using source test data from a small 
number of facilities, and there may be reason to suspect that the facilities tested 
do not represent a random sample of industry. There may also be evidence of 
variability within the source population. D-rated factors are considered below 
average. 

 E-rated emissions factors are calculated using source test data that have been 

represent a random sample of industry. There also may be evidence of variability 
within the source population. E-rated factors are considered poor. 

In selecting source categories/industries for analysis, we prioritized those with A- and B-
rated emissions factors. Because A-rated factors are typically calculated based on many tests 
from a representative sample of the industry, we selected A-rated factors for analysis so that we 
had sufficient data for statistical analysis, followed by selection of some B-rated emissions 
factors. If datasets consist of many emissions tests (e.g., more than 20 tests), then we can 
simulate smaller datasets and conduct statistical analyses on these smaller datasets (e.g., datasets 
comprised of three tests, six tests, nine tests). Consequently, the FIRE database was first sorted 
to identify A- and B-rated factors.  

The next criterion we used for selecting an industry was the availability of factors for 
multiple pollutants. We based this priority for selecting source categories/industries on the 
availability of emissions factors for the following pollutants (controlled and uncontrolled 
emissions):  

 PM with and without a control device 
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SO2 with and without a control device 
 NOx without a control device 
 Carbon monoxide with and without a control device 
 Volatile organic compounds (VOCs) with and without a control device 
 HAPs with and without a control device. 

This criterion serves two purposes. First, evaluating emissions factors for different 
pollutants can reveal whether the data from these pollutants are distributed differently and thus 
require different uncertainty ratios. Second, selecting industries with emissions factors for 
multiple pollutants is more efficient in obtaining the data and establishing the database for 
statistical analysis.  

The final criterion we used for selecting source category/industry was access to 
supporting background documentation and a detailed data summary for the specific source 
category/industry AP-42 section. Most sections in AP-42 provide background documentation 
that outlines how the emissions factors were determined. In most cases, background 
documentation includes a literature review, emissions factor methodologies, and reference 
materials; however, some sections of AP-42 did not provide an easily accessible and succinct 
summary of the data used to calculate the emissions factors. In those cases, we did not use the 
emissions factors for analysis. 

The initial search of FIRE identified 2,331 A-quality rated emissions factors, of which 
1,581 factors referenced a section of AP-42. This list was refined to identify 19 sections of 
AP-42 containing A-rated factors for multiple pollutants; a total of approximately 150 A-rated 
factors among the 19 sections. Six of these sections contained at least one A-rated factor for five 
of the pollutants of interest. We reviewed each of these six sections and selected three of the 
sections for analysis based on the number of factors available, the pollutants, and the availability 

Strandboard Manufacturing, was also reviewed because the data were readily available and 
included emissions factors (B-rated) for PM-filterable, PM-condensable, and HAP. We compiled 
emissions factor datasets for statistical analysis from the following AP-42 sections: 

 Wood Residue Combustion in Boilers (External Combustion Sources), 
Section 1.6 

 Refuse Combustion (Solid Waste Disposal), Section 2.1 
 Waferboard/Oriented Strandboard Manufacturing (Wood Products Industry), 

Section 10.6.1 
 Hot Mix Asphalt Plants (Mineral Products Industry), Section 11.1. 

Each of these AP-42 sections provided the supporting background documentation and 
detailed datasets used to develop the emissions factors.  

3.1.2 Data Summary by Industry  

The subsequent sections provide a summary of the emissions factor datasets from each of 
the four industries selected for statistical analysis. Each section presents a table that summarizes 
the emissions factor data selected, including the emissions source, pollutant, control device (if 
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applicable), emissions factor, number of emissions tests, n, used to calculate the emissions 
factor, and number of test runs. Appendix B includes the detailed emissions factor datasets.  

3.1.2.1  Wood Residue Combustion in Boilers (External Combustion Sources)  

Table 3-1 summarizes the emissions factors datasets for Wood Residue Combustion in 
Boilers (Wood Residue Combustion). This industry includes A-rated emissions factor datasets 
for CO, NOx, PM-condensable, PM-filterable, SO2, and specific HAPs (acetaldehyde, arsenic, 
benzene, cadmium, chromium, formaldehyde, lead, mercury, and nickel). Appendix B.1 (Tables 
B.1-1 through B.1-18) presents the detailed emissions data used in developing the emissions 
factors for Wood Residue Combustion. We used the average of test runs conducted during the 
emissions test to calculate emissions test data values from each individual facility. The overall 
emissions factors, as presented in AP-42, are the averages of all emissions tests and give equal 
weighting to each emissions test. 

3.1.2.2  Refuse Combustion (Solid Waste Disposal)  

Table 3-2 summarizes the emissions factors datasets for Refuse Combustion. These 
emissions factors include CO, NOx, PM-Total, PM-filterable, SO2, and specific HAPs (arsenic, 
cadmium, hydrogen chloride, lead, mercury, and nickel). Appendix B.2 (Tables B.2-1 through 
B.2-17) presents detailed emissions data that we used to calculate the emissions factors. 

Unlike the Wood Residue Combustion source category, the emissions factors for the 
Refuse Combustion source category are calculated from a weighted average. For Refuse 
Combustion, we calculated an emissions factor for each facility based on all emissions tests for 
that facility, and these are then averaged together to determine the overall emissions factor. This 
approach gives equal weight to each facility tested. For the purposes of our statistical analysis, 
we evaluated the emissions factor datasets in a slightly different manner. We converted the 
emissions factors datasets to a nonweighted average (i.e., all emissions tests were averaged 
together to determine the overall emissions factor). Although this approach yields a slightly 
different overall emissions factor for each pollutant tested, it is consistent with the approach used 
for the Wood Residue Combustion and the Hot Mix Asphalt Plants source categories. 

3.1.2.3 Waferboard/Oriented Strandboard Manufacturing (Wood Products 
Industry)  

Table 3-3 summarizes the emissions factors datasets for the Waferboard/Oriented 
Strandboard Manufacturing (hereafter referred to as W/OSB manufacturing) source category. 
We analyzed a single PM-filterable emissions factor from the W/OSB source category. 
Appendix B.3 (Table B.3-1) presents all emissions test data used in developing the emissions 
factor. As in the Refuse Combustion source category above, the emissions factor, as presented in 
AP-42, is calculated as a weighted average (i.e., an emissions factor is calculated for each 
facility, and then these are averaged together to determine the overall emissions factor). This 
approach gives equal weight to each facility tested. For the purposes of developing an emissions 
factor uncertainty ratio, we evaluated this dataset in a slightly different manner and used a 
nonweighted average to develop the overall emissions factors. 
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3.1.2.4  Hot Mix Asphalt Plants (Mineral Products Industry)  

Table 3-4 summarizes the emissions factor datasets for Hot Mix Asphalt Plants. The 
emissions factor dataset for Hot Mix Asphalt includes benzene, formaldehyde, PM-condensable 
(inorganic), PM-condensable (organic), and PM-filterable. Appendix B.4 (Tables B.4-1 through 
B.4-8) presents all emissions test data used in developing the emissions factors. The overall 
emissions factor gives equal weighting to each emissions test. 

3.1.3 Data Summary by Pollutant  

Table 3-5 presents an overview of the emissions factor datasets selected for analysis, 
organized by pollutant. 

3.2 Statistical Analysis  

We considered several statistical approaches to developing emissions factor uncertainty 
ratios. The primary approach selected for developing the emissions factor uncertainty ratios is 
designed to target selected boundary statistics of the population of emissions data. The true 
emissions from a single source of interest may fall anywhere within the range of emissions data. 
Section 3.2.1 provides more information about this statistical approach. 

During the course of the project, several reviewers commented on the approach described 
above. They expressed concern that the approach could be considered inconsistent with the 
approach typically used for assessing uncertainty of an emissions factor for inventory use (i.e., 
determining the confidence interval about the mean [the emissions factor]). One reviewer also 
expressed concern that the approach applies to a single emissions unit; it does not account for 
any reduction in uncertainty one would expect for estimating total (or average) emissions from 
multiple emissions units (e.g., the emissions from a facility with multiple boilers). In response to 
these comments, we conducted additional statistical analyses to calculate emissions factor 
uncertainty ratios based on the normalized sampling distribution of emissions factors (means) 
from the population. Section 3.2.2 presents this statistical approach. 

One reviewer suggested an approach based on the analysis of three hypothetical log-
normal distribution populations, each with a population mean of 1.0 and standard deviations of 
0.5, 1.0, and 2.0, respectively. Although we reviewed this approach, we did not conduct any 
additional analyses beyond what the reviewer provided because of time and budget constraints. 
Section 3.2.3 describes this approach. Finally, another reviewer recommended modifications to 
the analyses based on quantiles of the population. In response to these comments, we conducted 
limited analyses to determine the impact on results. Section 3.2.3 also describes these additional 
exploratory analyses. 
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3.2.1 Emissions Factor Uncertainty Ratios Based on Population Percentiles  

Figure 3-1 presents a flow diagram of the statistical procedure used to calculate the 
emissions factor uncertainty ratios based on boundary (target) population statistics of the 
population. The statistical analysis includes the following major steps: 

1. Perform exploratory data analyses using summary statistics, histograms, and 
empirical CDFs. 

2. Identify parametric theoretical PDFs to model the data and estimate the parameters of 
the density function based on the data. Perform a goodness-of-fit test using the 

approaches implemented in the statistic software Splus® 7.0 for Windows, obtain 
PDF parameter estimates. 

3. For each dataset, use Monte Carlo techniques and the parameter estimates obtained in 
Step 2 to simulate the hypothetical population density of the emissions factor for the 
specific pollutant. For each simulated hypothetical population, calculate the following 
population statistics: minimum, 1st percentile, 5th percentile, 10th percentile, 15th 
percentile, 20th percentile, 25th percentile, median, mean, 75th percentile, 80th 
percentile, 85th percentile, 90th percentile, 95th percentile, 99th percentile, and 
maximum.  

4. For each hypothetical population, select 10,000 random samples of a specified size. 
Calculate the sample mean for each of the 10,000 samples. Repeat for samples (n = 
number of tests) of size 1, 3, 5, 10, 15, 20, and 25. 

5. For each distribution of 10,000 means based on n samples, calculate the ratio of the 
population statistics (obtained in Step 3) and the sample mean. Because the sample 
mean converges in probability to the population mean, the distribution of this ratio 
(sample mean to population mean) will approach 1 as the sample size increases. The 
distribution of ratios characterizes the distribution of the uncertainty ratio for the 
emissions factor. 

For this analysis, we assumed that the data available were a representative sample of the 
population of interest. This is reasonable for A-rated emissions factors and the limited number of 
B-rated emissions factors included in the study. Furthermore, we decided to disregard any 
precision concerns regarding the difference in number of test runs comprising each emissions 
test value used to calculate the emissions factor.2  

We performed data visualization (histograms and empirical CDF plots) to observe the 
range, skewness of the data, and other possible characteristics, such as the possible mixture of 
two or more distributions. We obtained summary statistics. For illustration purposes, a detailed 
description of the statistical analysis of the wood residue combustion in boilers is included in this  

                                                 
2 Typically, each emissions test is comprised of multiple test runs (usually a minimum of three test runs 
comprises an emissions test). 
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section, with emphasis on carbon monoxide. Figure 3-2 shows the histogram and the empirical 
CDF corresponding to the carbon monoxide data. The asymmetric shape of the histogram shows 
a positive skewness. Positive skewness is characterized by the asymmetric tail that extends 
toward more positive values. This asymmetric shape, which is typical of emissions factors, 
suggests that the normal distribution (which has a bell-shaped distribution) would not fit well 
with these data. The positive skewness also indicates that the sample mean, which is affected by 
extreme values, will be larger than the median. The empirical CDF shows that the maximum is 
around 2.5 and the median is around 0.5.  

Empirical distributions can be used to estimate the characteristics of the population, but 
they should not be used to extrapolate beyond the observed values in the data. In the case of 
small datasets, this limitation is important because the variability in the true population may 
drastically differ from the observed variability in the dataset. To account for this limitation, we 
considered theoretical PDFs to model the data. The candidate probability density must be 
skewed and defined for positive values. Previous research from Frey and Bammi (2002), Zheng 
and Frey (2001), and Frey and Zheng (2002) discussed that Weibull, log-normal, beta, and 
gamma density functions were appropriate to model the emissions factors for nitrogen oxides, 
carbon monoxide, and hydrocarbons. Results from the data visualization stage suggested that the 
Weibull, log-normal, and gamma functions could be considered candidates for the modeling step 
(Step 2). 

Figure 3-2. Histogram and empirical CDF of carbon monoxide. 

Maximum likelihood estimation was used to estimate the parameters of the theoretical 
distribution. The method of moments estimation was used to obtain initial values for the 
maximization function. The method of moments estimator is an estimation technique that results 
by equating the population moments (which are population parameters) to sample estimates. 
Goodness of fit tests are used to assess how well a model fits the data. Lilliefors (1969, 1967) 
and Pierce (1982) showed that when the parameters of the distribution are estimated from the 
sample, the Kolmogorov Smirnov test provides non-correct p-values. Corrections for the 
Kolmogorov Smirnov tests are available for the normal and exponential distribution (Stephens, 
1970, 1974, 1976; Dallal and Wilkinson, 1986; Iman, 1982; and Finkelstein and Schafer, 1971) 
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but not for the Gamma distribution. Cheng and Stephens (1986) proposed a goodness-of-fit test 

distribution when the parameters are estimated from the sample as when the parameters are 
known. The test is based on the spacing of the data and provides reliable statistics for small 
sample sizes. 

We fit the three parametric models (Weibull, log-normal, and gamma) to all of the 
datasets. The gamma density did not agree with any of the initial (Wood Residue Combustion) 
datasets considered (p-values <0.0001). The densities for log-normal and Weibull distributions 
showed more agreement with the datasets (see Table 3-6 for example p-values of Wood Residue 
Combustion emissions factors). When the p-values from two candidate densities were greater 
than 0.05, the best candidate was selected based on the larger p-value. In the case of carbon 

(0.998 and 0.997) for both the Weibull and the log-normal. The Weibull distribution showed the 
larger p-value, but both of them are so close that one could decide to use either. Based on the 
larger p-value, the Weibull distribution was assumed for the carbon monoxide dataset. Table 3-7 
shows the maximum likelihood estimates for the fit (the log-normal or Weibull distribution, as 
applicable) for selected Wood Residue Combustion datasets.  

by Pollutant and Probability Density for Wood Residue Combustion in Boilers  

p-values 

Pollutant 
Weibull 
Density 

Gamma 
Density 

Log-normal 
Density 

Acetaldehyde 0.049 0.000 0.156 

Benzene 0.701 0.000 0.915 

Carbon monoxide 0.998 0.000 0.997 

Formaldehyde 0.447 0.000 0.696 

Nitrogen oxides 0.004 0.000 0.214 

Sulfur dioxide 1.00 0.000 1.00 

PM-filterable, dry wood, mechanical 
collector 

1.00 0.000 1.00 

PM-filterable, wet wood, mechanical 
collector 

0.707 0.000 0.305 

PM-filterable, dry wood, uncontrolled 0.92 0.000 0.982 

PM-filterable, wet wood, uncontrolled 0.571 0.000 0.604 

PM-filterable, wet scrubber 0.145 0.000 0.245 

PM-condensable 0.864 0.000 0.934 

PM = particulate matter; CDF = cumulative distribution function. 
Note: p-values greater than 0.05 suggest no statistical evidence against the agreement 

between the CDF of the pollutant data and the theoretical density function. 
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Table 3-7. Estimated Parameters for the Fit of the Hypothetical Distribution for Wood 
Residue Combustion in Boilers  

Log-normal 
Distribution 

Weibull 
Distribution 

Pollutant µ  Scale Shape 

Acetaldehyde -9.02 1.81   

Benzene -7.95 2.12   

Formaldehyde -7.06 1.86   

Nitrogen oxides -1.66 0.53   

Sulfur dioxide -4.83 1.63   

PM-filterable, dry wood, mechanical 
collector 

-1.27 0.4   

PM-filterable, dry wood, uncontrolled -1.00 0.4   

PM-filterable, wet wood, uncontrolled -1.27 0.56   

PM-condensable -4.66 1.13   

Carbon monoxide   0.64 1.26 

PM-filterable, wet wood, mechanical 
collector 

  0.2 0.82 

PM-filterable, wet scrubber -2.76 0.09   

PM = particulate matter. 

Ten thousand values were randomly drawn from the Weibull distribution with a 0.64 
scale parameter and a 1.26 shape parameter. This collection of 10,000 values will be referred to 
hereafter as the hypothetical Weibull population or hypothetical distribution. The following 
population parameters were calculated from the hypothetical population: minimum, maximum, 
mean, median, and the 1st, 5th, 10th, 15th, 20th, 25th, 75th, 80th, 85th, 90th, 95th, and 99th percentiles. 
Figure 3-2 shows the histogram for the CO dataset with the density of the hypothetical Weibull 
distribution superimposed. Figure 3-3 presents the plot of the empirical CDF (continuous line), 
corresponding to the CO dataset, and the hypothetical Weibull CDF (dotted line). The similarity 
between the two lines observed in the CDF plot suggests a good fit was achieved for the dataset. 
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Figure 3-3. Graphical display of goodness-of-fit of the carbon monoxide data 
for wood residue combustion in boilers. 

Monte Carlo simulations refer to the repeated sampling of the hypothetical distribution to 
make conclusions about the data obtained from the population. Ten thousand samples of sizes 1, 
3 to 5, 10, 15, 20, and 25 were randomly drawn from the hypothetical populations using a Monte 
Carlo approach. For each sample size, the mean was calculated for each sample. Each data value 
in the sample represents an emissions test and the mean of these values represents the calculated 
emissions factor. 

An emissions factor uncertainty ratio based on the Monte Carlo simulation is defined as 
the ratio between the target population statistic (minimum, maximum, mean, median, and the 1st, 
5th, 10th, 15th, 20th, 25th, 75th, 80th, 85th, 90th, 95th, and 99th percentiles) and the emissions factor as 
shown below: 

 
EF

EF
EF statistictarget

ratioyuncertaint  (Eq. 3-1) 

where 
EFuncertainty ratio= Estimate of the emissions factor uncertainty 
EFtarget statistic  = Target population value of the emissions distribution, hereafter 

referred to as the target statistic (e.g., 95th percentile), in units of the 
AP-42 emissions factor 

EF  =  Emissions factor, as presented in AP-42, in units of the AP-42 
emissions factor. 

 
The sampling distribution of the uncertainty ratios was studied in order to select an 

uncertainty ratio value for the sample sizes considered. The sampling distribution of an 
uncertainty ratio to target a population value refers to the collection of 10,000 values of the ratio 
between each of the means obtained from the Monte Carlo simulation and a target statistic. 

Figure 3-4 shows the Monte Carlo 95th percentile, median, and 5th percentile of the 
sampling distribution of uncertainty ratios for the following target population statistics: 5th and 
10th percentiles, median, mean, and 90th and 95th percentiles of the hypothetical distribution of 
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CO for Wood Residue Combustion, respectively. The upper and lower lines correspond to the 
Monte Carlo 95th and 5th percentiles of the uncertainty ratios, respectively, and the dashed line 
corresponds to the median of the uncertainty ratios. The symmetry of the distribution of the 
uncertainty ratios increases with the sample size. This is observed in the narrowing and 
symmetric look of the 5th and 95th percentiles around the median. 

Figure 3-4 also shows how the uncertainty ratio decreases with sample size. For sample 
sizes greater than 3, almost all of the uncertainty ratios obtained to target the 5th and 10th 

percentiles are below 1, suggesting a reduction effect on the emissions factor to estimate these 
percentiles. On the other hand, almost all of the uncertainty ratio values obtained to target the 
90th and 95th percentiles are greater than 1, suggesting that the resulting uncertainty ratio will 
increase the emissions factor to estimate these upper population percentiles. About 50 percent of 
the uncertainty ratios obtained to target the median and mean are below 1, and about 50 percent 
are equal to 1. 

For each pollutant, three statistics (the mean uncertainty ratio, the median uncertainty 
ratio, and the 95th percentile uncertainty ratio) were considered candidates for the final 
uncertainty ratio. The criterion for selecting these statistics was based on their importance in 
describing the population characteristics. By definition, 50 percent of the uncertainty ratios will 
be lower than the median and 50 percent will be higher than the median. Because the median is 
not affected by extreme values or long tails, it is considered a better summary statistic than the 
mean when the distributions are skewed. The 95th percentile provides a value that is larger than 
95 percent of the uncertainty ratios and lower than 5 percent of the uncertainty ratios.  

Table 3-8 shows the median, mean, and 95th percentile uncertainty ratios by number of 
tests and target statistic for CO for Wood Residue Combustion. For all three possible uncertainty 
ratio statistics considered (median, mean, 95th percentile), the uncertainty ratio to target all of the 
population statistics (5th percentile, 10th percentile, etc.) decreases with increasing sample size. 
The uncertainty ratio values increase as the target population statistic approaches the upper 
population percentiles for all sample sizes.  

Referring to Table 3-8, the Monte Carlo median uncertainty ratio needed to estimate the 
5th and 10th percentiles is approximately 0.2 and 0.3, respectively, for all number of tests. To 
target the population median, a factor of 0.9 was computed when the number of tests is greater 
than three. To target the 90th percentile, an uncertainty ratio of 2 seems appropriate for all sample 
sizes. To target the 95th percentile, an uncertainty ratio of 2.7 was computed for an emissions 
factor based on one test and an uncertainty ratio of 2.4 was computed for an emissions factor 
based on three or more tests. 
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Figure 3-4. Monte Carlo 95th percentile, median, and 5th percentile for the distribution of 
uncertainty ratios for selected statistics (5th, 10th, median, mean, 90th, and 95th percentile) of 

the hypothetical population of carbon monoxide for wood residue combustion in boilers. 
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Table 3-8. Emissions Factor Uncertainty Ratios for Carbon Monoxide (Uncontrolled), 
Wood Refuse Combustion, by Number of Tests (n) and Target Statistic  

Median (uncertainty ratio may tend to overestimate target statistic 50% of time 
and underestimate 50% of time) 

Target Statistic 

n 5th Percentile 
10th

Percentile Median Mean 
90th

Percentile 
95th

Percentile 

1 0.19 0.30 1.0 1.2 2.2 2.7 

3 0.17 0.27 0.91 1.0 2.0 2.4 

5 0.16 0.26 0.89 1.0 1.9 2.3 

10 0.16 0.26 0.88 1.0 1.9 2.3 

15 0.16 0.26 0.88 1.0 1.9 2.3 

20 0.16 0.26 0.88 1.0 1.9 2.3 

25 0.16 0.26 0.88 1.0 1.9 2.3 

Mean (arithmetic average value of the uncertainty ratio for the target statistic) 

n 5th Percentile 
10th 

Percentile Median Mean 
90th 

Percentile 
95th 

Percentile 

1 0.37 0.60 2.0 2.3 4.5 5.4 

3 0.19 0.30 1.0 1.2 2.3 2.7 

5 0.18 0.28 0.96 1.1 2.1 2.5 

10 0.17 0.27 0.91 1.0 2.0 2.4 

15 0.16 0.26 0.90 1.0 2.0 2.4 

20 0.16 0.26 0.90 1.0 2.0 2.4 

25 0.16 0.26 0.89 1.0 1.9 2.3 

95th Percentile (uncertainty ratio may underestimate target statistic 5% of time  
and overestimate 95% of time) 

n 5th Percentile 
10th 

Percentile Median Mean 
90th 

Percentile 
95th 

Percentile 

1 1.0 1.6 5.5 6.3 12 14 

3 0.36 0.58 2.0 2.3 4.3 5.2 

5 0.29 0.47 1.6 1.8 3.5 4.2 

10 0.24 0.38 1.3 1.5 2.8 3.4 

15 0.22 0.35 1.2 1.4 2.6 3.1 

20 0.21 0.34 1.1 1.3 2.5 3.0 

25 0.20 0.32 1.1 1.3 2.4 2.9 
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If the mean of the uncertainty ratios is used to estimate the 5th percentile, the uncertainty 
ratio is approximately 0.4 for an emissions factor based on one test, and 0.2 for three or more 
tests. Estimating the 10th percentile requires an uncertainty ratio of 0.6 or 0.3 for an emissions 
factor based on one test or three or more tests, respectively. To estimate the population median, 
an uncertainty ratio of 2 is needed for an emissions factor based on one test and an uncertainty 
ratio of 0.9 for an emissions factor based on 10 or more tests. When estimating the population 
mean, an uncertainty ratio of 2.3 is needed only when the number of tests used is one. To target 
the 90th percentile, an uncertainty ratio of 4.5 is needed for an emissions factor based on one test, 
2.3 and 2.0 are needed when the number of tests used is three and more than five, respectively. 
In the case of the 95th percentile, an uncertainty ratio of 5.4 is needed for an emissions factor 
based on one test; an uncertainty ratio of 2.7 and 2.5 would be needed to target the 95th

percentile when the number of tests is three and five or more, respectively. 

If the 95th percentile uncertainty ratio is selected, the uncertainty ratio value is 0.36 to 
estimate the population 5th percentile using an emissions factor based on three tests. If the target 
is the median, the uncertainty ratio value is 5.5 for an emissions factor based on one test, 2 for 
those based on two to three tests, and 1.1 for 20 or more tests. When estimating the mean, the 
uncertainty ratio is 6.3 for an emissions factor based on one test, 2.3 for three tests, and up to 1.3 
for 20 or more tests. The estimation of the 90th percentile requires an uncertainty ratio of 12 for 
an emissions factor based on one test, 4.3 for three tests, 3.5 for five tests, 2.8 for 10 tests, and 
2.4 for 25 or more tests. The 95th percentile estimation requires an uncertainty ratio of 14 to 
adjust the emissions factor based on one test, 5.2 for three tests, and an uncertainty ratio of 3 for 
15 or more tests. 

3.2.2 Emissions Factor Uncertainty Ratios Based on a Normalized Sampling Distribution 
of Emissions Factors (Means)  

Similar to the description of statistical analyses in Section 3.2.1, we conducted the 
statistical analyses described in this section on the AP-42 emissions factor data described in 
Section 3.1. The first four steps of the analyses are the same as those described in Section 3.2.1; 
however, the fifth step differed. Figure 3-5 presents the approach. The distribution of means 
obtained in Step 4 for each value of n (for n = 1 to 30) is known in the statistical literature as the 

decreases as the sample size increases, but the mean of the distribution, which approaches the 
mean of the hypothetical distribution, is not affected by the sample size; therefore, all sampling 
distributions are centered in the population mean. In Step 5b, all sampling distributions obtained 

by the mean of the corresponding sampling distribution. 

As a result, all 30 normalized sampling distributions have a mean equal to 1. As an 
example, Figure 3-6 presents the normalized sampling distribution for CO, where n = 15. 
Observe that each normalized sampling distribution can be considered as the sampling 
distribution of the uncertainty ratio statistic if the goal is to target the population mean. The 
sampling distribution shows the probability of observing the different values of this uncertainty 

95 percent, and 99 percent confidence intervals for the population mean (emissions factor) based 
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on a sample size (number of emissions tests) of a specified size n. The 95 percent confidence 
interval around the mean of this sampling distribution has endpoints equal to the 2.5th and 97.5th

percentiles of the normalized sampling distribution. The 95 percent confidence intervals are 
centered on 1. These endpoints will define the lower and upper values for the uncertainty ratio if 
the goal is to target the mean of the hypothetical distribution. As a result, a 95 percent 
confidence interval for this uncertainty ratio produces an approximated 95 percent confidence 
interval for the mean (the emissions factor). As an example, Table 3-9 presents selected 
sampling distribution percentiles for selected n values for CO.  

3.2.3 Alternative Approaches Explored  

As a result of comments received during the course of this study, two other statistical 
approaches were discussed, considered, and to a limited extent, explored. One explored approach 
uses a different procedure to determine the hypothetical population distribution parameters to 
account for the uncertainty associated with the unknown population distribution. Statisticians 
may follow a frequentist approach or a Bayesian approach when analyzing data. We used the 
frequentist approach, which is where model parameters are considered fixed quantities 
(population values) and uncertainty arises due to estimating these population parameters using a 
finite collection of data. In the Bayesian approach, parameters are considered random variables 
and instead of one population parameter we have a population of possible parameters. 
Uncertainty in this case comes from the data and the distribution of the parameters. In the 
Bayesian approach, we assumed a uniform distribution for the model parameters; therefore, we 
defined an interval of possible values (a plausible range) for each of the parameters of the 
probability distribution. Then, we randomly selected and used parameters from the respective 
intervals to fit a probability distribution model to the data. If the resulting probability distribution 
is a good adjustment to the data, then one random value is generated from this distribution. This 
process is repeated 10,000 times, resulting in a distribution of values that constitutes the 
hypothetical population. During the study, we re-evaluated three emissions factor datasets using 
this revised technique that incorporates the Bayesian approach to account for the uncertainty in 
the model parameters. We examined the emissions factor datasets for formaldehyde, CO, and 
NOx for Wood Residue Combustion. The results of these limited analyses show little difference 
in the uncertainty ratios for two of the three datasets (formaldehyde and CO). For example, for 
formaldehyde the uncertainty ratios for the 90th percentile for n = 25 are 2.63 and 2.53 for the 
original (frequentist) approach and alternative (Bayesian) approach, respectively. The results 
between the two approaches resulted in a greater difference for the third dataset, NOx; for 
example, the uncertainty ratios for the 90th percentile for n = 25 are 2.45 and 1.70 for the original 
(frequentist) approach and alternative (Bayesian) approach, respectively. Appendix F presents 
the complete results for the analysis of these three datasets.  
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Figure 3-5. Overview of statistical approach. 

 

 
Figure 3-6. Normalized Monte Carlo sampling distribution of the mean (n = 15) of carbon 

monoxide for wood residue combustion in boilers.  
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A commenter suggested a second approach that was designed to account for the 
uncertainty induced by three sources of variability. The commenter provided example 
calculations. This approach was suggested as a technique to address applications of emissions 
factors involving a small number of similar emissions units (e.g., three boilers at a single 
facility). The three sources of variability considered in this approach are the skewness of the 
distribution of emissions data, the number of tests comprising the emissions factor, and the 
number of process (emissions) units for which emissions are being estimated. This analysis is 
based on hypothetical populations and does not use the AP-42 emissions data. In this approach, 
three hypothetical log-normally distributed populations were generated, each comprised of 
10,000 data points. The three populations have a population mean of 1.0 and standard deviations 
of 0.5, 1.0, and 2.0, respectively. Two populations were generated by randomly drawing 
independent samples from each of the hypothetical populations; one population to replicate 

emissions from the emissions units. To compare the calculated emissions factors and the actual 
emissions of the emissions units, the calculated emissions factor value was subtracted from the 
actual emissions unit value.  

As previously mentioned, each hypothetical population consisted of 10,000 values drawn 
with replacement from a log-normal distribution with a mean equal to 1 and standard deviation 

they are drawn from the hypothetical population of emissions. Nine independent sampling 
distributions of size of 10,000 were generated by repeated independent sampling from a 

ons from nine different facilities having from 
one to nine similar emissions units. The distribution corresponding to the first emissions unit 
represents a facility with only one emissions unit, and the 10,000 values are actual emissions 
based on a sample size of one. The first two emissions units (population distributions) represent 
a facility with two emissions units; therefore, actual emissions are based on samples of size two, 
one value from each emissions unit. Following the same reasoning, all the nine emissions units 
(population distributions) represent a facility with nine emissions units that will generate actual 
emissions based on sample sizes of nine. The result consists of nine sampling distributions, 
where sampling distribution i (i = 1,..., 9) represents the sampling distribution of the emissions 
factor based on i emissions units. Similarly, 20 sampling distributions were generated to 
represent calculated emissions factors developed using from 1 to 20 emissions tests, n (n = 1,...., 
20).  

Next, all combinations of differences between the nine sampling distributions 
representing actual emissions from emissions units and the 20 sampling distributions 
representing calculated emissions factor values were calculated. This approach simulates the 
distribution of the differences in emissions factors based on different sample sizes. An 
uncertainty ratio for the emissions factor was defined as (1 plus differences). Selected percentiles 
of the distribution of uncertainty ratios produced upper bounds for the emissions factor (mean). 
A relevant aspect of this approach is the incorporation of the uncertainty due to the differences 
between the number of tests the emissions factor was based on and the number of emissions 
units. Also, this approach is based on the assumption that it is possible to model all the pollutants 
using one probability distribution with few varying parameters, which in some sense follows the 
finding from this project, that the pollutants considered were either Weibull or log-normally 
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distributed. As expected, when the number of emissions units increases and the number of tests, 
n, used to calculate the emissions factor increases, the difference between the actual emission 
factor and the calculated emission factor will tend to zero. We did not conduct any additional 
analyses using this statistical technique beyond the calculations provided by the commenter. 
Appendix G presents an example of the results provided to us by the commenter.  
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4.0 Results 
This section summarizes the results of the analyses for the 44 emissions factor datasets 

during this study. The appendices present detailed results for each emissions factor analysis. 
Section 4.1 shows the summary statistics for the theoretical PDFs. Section 4.2 summarizes the 
emissions factor uncertainty ratios by pollutant based on population values other than the mean. 
Section 4.3 presents the results of the normalized sampling distribution of emissions factors 
(means) from the population. Section 4.4 discusses the results from different analyses.  

4.1 Summary Statistics of Probability Density Functions  

We have identified and obtained the following four datasets for statistical analysis: Wood 
Residue Combustion, Refuse Combustion, Hot Mix Asphalt Plants, and W/OSB. We included a 
total of 44 emissions factors in the analyses for the four datasets. As discussed in Section 3.2, we 
considered theoretical PDFs to model the emissions factor data. Candidate models were the 
Weibull, log-normal, and gamma PDFs. We used maximum likelihood estimation to estimate the 

values by probability density for each emissions factor dataset. Table 4-2 presents the estimated 
parameters for the fit of the probability distribution for each emissions factor dataset. Appendix 
C provides a histogram of each emissions factor data with the fitted Weibull or log-normal 
probability density function superimposed, as well as the CDF.  

4.2 Emissions Factor Uncertainty Ratios for Population Percentiles 
(for Use Based on Population Values Other than the Mean) 

Based on the statistical approach presented in Section 3.2.1, we calculated emissions 
factor uncertainty ratios for each emissions factor in the datasets. For some sources and 
pollutants, multiple emissions factors were available for different combinations of air pollution 
control device (APCD) type and the type of fuel (e.g., separate uncontrolled PM-filterable 
emissions factors for Wood Residue Combustion of Dry Wood and Wet Wood, as well as PM-
Filterable emissions factors for Wood Residue Combustion of Dry and Wet Wood with a 
mechanical collector control device).  

Section 3.2.1 presents the statistical approach used to calculate emissions factor 
uncertainty ratios and example results for CO emissions from Wood Residue Combustion. 
Table 4-3 presents the example emissions factor uncertainty ratios for CO from Wood Residue 
Combustion. Emissions factor uncertainty ratios are provided for several pertinent population 
statistics of interest, including the 5th percentile, 10th percentile, median, mean, 90th percentile, 
and the 95th percentile of the data distribution. The uncertainty ratios are a function of the 
number of emissions tests, n, on which the emissions factor is based, and include uncertainty 
ratios for n = 1 to n = 25. As explained in Section 3.2.1, Table 4-3 includes emissions factor 
uncertainty ratios based on three different statistics obtained from the Monte Carlo sampling 
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distribution of uncertainty ratios; these are the median, the mean, and the 95th percentile. Given 
the skewness of the sampling distribution of uncertainty ratios, it is anticipated that the statistic 
selected from the Monte Carlo sampling distribution of uncertainty ratios has a significant 
impact on the uncertainty ratio values. 

As previously stated in Section 3.2.1, use of the 95th percentile from the Monte Carlo 
sampling distribution of uncertainty ratios is a very conservative approach; it means that 
95 percent of the uncertainty ratios calculated from the Monte Carlo simulation (10,000 samples) 
are less than the uncertainty ratio value selected. We propose to use the uncertainty ratio value 
represented by the median of the Monte Carlo distribution of uncertainty ratios; this is the 
uncertainty ratio value for which 50 percent of the uncertainty ratio values calculated from the 
Monte Carlo simulation (10,000 samples) are less than and 50 percent are greater than the 
uncertainty ratio value selected (the median value). Given the observed skewness (asymmetry) 
of the uncertainty ratio values distribution, the median (which is not affected by extreme values) 
will provide a better center measure than the mean. Throughout the remainder of this section, the 
results presented and the discussion will be based on the median of the Monte Carlo sampling 
distribution of uncertainty ratios. Appendix D presents summary tables of the uncertainty ratio 
values for various target statistics, n values, and the median, mean, and 95th percentile Monte 
Carlo distributions for each emissions factor. 

4.2.1 Summary of the Uncertainty Ratios by Pollutant 

Table 4-4 shows the emissions factor uncertainty ratios, listed by pollutant and by APCD, 
calculated for all 44 emissions factors from the four datasets. Each of the pollutants is discussed 
in the following sections. 

HAPs. Each set of the supporting emissions data for the 18 emissions factors for the 
HAP pollutants shown in Table 4-4 contained a significant number of tests (by emissions factor 
development standards), for example 

 21 emissions tests for acetaldehyde, all fuels, uncontrolled or with PM control 
(Wood Residue Combustion) 

 22 tests for nickel, uncontrolled or with PM control (Wood Residue Combustion) 

 37 tests for nickel, spray dryer/fabric filter (SD/FF) (Refuse Combustion, Mass 
Burn and Modular Excess Air Units) 

 19 tests for benzene, all fuels, uncontrolled or with PM control (Wood Residue 
Combustion) 

19 tests for benzene, fabric filter (Asphalt, Drum Mix) 

 48 tests for formaldehyde, all fuels, uncontrolled or with PM control (Wood 
Residue Combustion) 

 21 tests for formaldehyde, fabric filter (Asphalt, Drum Mix). 
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As expected, for the 18 emissions factors for the HAP pollutants, the uncertainty ratio 
decreases as n increases. For the 18 factors there is significant variability in the emissions factor 
uncertainty ratios, especially for values of n < 5. For example, for acetaldehyde emissions from 
Wood Residue Combustion, the uncertainty ratios for the 90th percentile range from 4.9 to 2.5, 
for n = 1 to n = 25, respectively. For nickel emissions from Wood Residue Combustion, the 90th

percentile uncertainty ratios range from 14 to 2.8, for n = 1 to n = 25, respectively. The 90th 
percentile uncertainty ratios for controlled nickel emissions (SD/FF) from Refuse Combustion 
(Mass Burn) range from 3.5 to 2.2 for n = 1 to n = 25.  

The uncertainty ratios for the mean value approach 1 for most of the HAP emissions 
factors when n = 25; however, when n = 1, the uncertainty ratios for the mean value range from 
1.1 (HCl, uncontrolled, Refuse Combustion) to 11 (Arsenic, uncontrolled or with PM control, 
Wood Combustion). 

As with the other pollutants that show variability (discussed below), when n > 5, the 
values of the uncertainty ratios begin to stabilize. With the HAP pollutants, the uncertainty ratios 
continue to decrease, but at a much slower rate. 

PM-condensable. Five emissions factors for PM-condensable, including both organic 
and inorganic, were analyzed and the uncertainty ratios are shown in Table 4-4. There is less 
variability in the uncertainty ratio values for PM-condensable than for the HAPs. As expected, 
the uncertainty ratio decreases as n increases. For example, for PM-condensable, all fuels, 
uncontrolled emissions from Wood Combustion, the 90th percentile uncertainty ratios range from 
4.4 to 2.4 when n = 1 to n = 25, respectively. For PM-condensable organic emissions from Hot 
Mix Asphalt (Drum Mixer) with WS/FF controls, the 90th percentile uncertainty ratios range 
from 6.0 to 2.5 when n = 1 to n = 25, respectively. While the uncertainty ratio values vary as a 
function of n in all of the source categories, the uncertainty ratio values begin to stabilize when n 
> 5. 

The uncertainty ratios for the mean value approach 1 for the PM-condensable emissions 
factors when n = 25. When n = 1, the uncertainty ratios for the mean value range from 1.4 
(Inorganic, Asphalt-Drum Mix, WS/FF) to 2.6 (Organic, Asphalt-Drum Mix, WS/FF). 

PM-filterable. Table 4-4 shows the emissions factor uncertainty ratios that we calculated 
for the 15 PM-filterable emissions factors. For these emissions factors, there was less variability 
in the uncertainty ratios with respect to n than for other pollutants. For example, for PM-
filterable, uncontrolled (Refuse Combustion, Refuse-Derived Fuel [RDF]), the uncertainty ratios 
for the 90th percentile range from 1.6 to 1.5, when n = 1 to n = 25, respectively. The largest 
variability with respect to n seen for PM-filterable emissions factors is for Refuse Combustion 
(RDF) with ESP control; the uncertainty ratio for the 90th percentile ranges from 5.2 to 2.5, when 
n = 1 to n = 25, respectively. For several of the PM-filterable emissions factors, there is little to 
no variability in the uncertainty ratio as n changes, for each statistic of interest.  

The uncertainty ratios for the mean value approach 1 for the PM-filterable emissions 
factors when n > 20 for all of the factors except Refuse Combustion (RDF) with ESP control, 
which is 1.1 for n = 20. When n = 1, the uncertainty ratios for the mean value range from 1.1 
(Wood Combustion, WS) to 2.3 (Refuse Combustion [RDF] with ESP).  
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Gaseous criteria pollutants. For purposes of discussion, we grouped the NOx, SO2, and 
CO emissions factors as gaseous criteria pollutants. We analyzed a total of six emissions factors 
(two for each pollutant). Table 4-4 presents the uncertainty ratios for these six emissions factors. 

The CO analysis was conducted from supporting emissions data for 128 emissions tests 
for Wood Residue Combustion and for 35 emissions tests for Refuse Combustion. For CO, there 
is little variability in the emissions factor uncertainty ratios as a function of n. This stability is 
true for both source categories shown. Data for CO emissions collected from well-operating 
combustion sources (i.e., no products of incomplete combustion) would be expected to have little 
variability. For Wood Residue Combustion, the uncertainty ratio for the 90th percentile ranges 
from 2.2 to 1.9 when n = 1 to n = 25, respectively; for the Refuse Combustion (Mass Burn 
Waterwall) the uncertainty ratio ranges from 2.7 to 2.0 when n = 1 to n = 25, respectively. For 
CO, the uncertainty ratio for the mean value is 1 when n > 10 and ranges from 1.2 (Wood 
Combustion) to 1.4 (Refuse Combustion) when n = 1.  

We conducted the NOx analysis from supporting emissions data that included 82 
emissions tests (Wood Residue Combustion) and 31 emissions tests (Refuse Combustion, Mass 
Burn Waterwall). There is a large difference in the results for the two factors. For Wood Residue 
Combustion, the uncertainty ratio for the 90th percentile ranges from 4.9 to 2.5 when n = 1 to 
n = 25, respectively. For Refuse Combustion, there is no variation in the uncertainty ratio for the 
90th percentile as n changes; it remains unchanged at 1.3. For Wood Residue Combustion, the 
uncertainty ratios for the mean value range from 2.2 to 1.1 when n = 1 to n = 25, respectively. 
For Refuse Combustion, there is no variation in the uncertainty ratio for the mean value; it 
remains unchanged at 1. 

The SO2 analysis was conducted on a dataset of 28 tests for Wood Residue Combustion 
and 46 tests for Refuse Combustion (Mass Burn and Modular Excess Air). Like the NOx 
uncertainty ratios, there is a large difference in the results for the two factors because the wood 
residue combustion data distribution is more skewed than the Refuse Combustion data. For 
Wood Residue Combustion, the uncertainty ratio for the 90th percentile ranges from 8.2 to 2.6 
when n = 1 to n = 25, respectively. For Refuse Combustion, there is little variation in the 
uncertainty ratio for the 90th percentile as n changes; it ranges only from 1.8 to 1.7 when n = 1 to 
n = 25. For Wood Residue Combustion, the uncertainty ratios for the mean value range from 3.8 
to 1.2 when n = 1 to n = 25, respectively. For Refuse Combustion, there is no variation in the 
uncertainty ratio for the mean value; it remains unchanged at 1. 

For all three gaseous criteria pollutants, CO, NOx, and SO2, once n > 5, the changes in 
the uncertainty ratio values stabilize. 

4.2.2 Composite Emissions Factor Uncertainty Ratios 

In this section, we discuss the calculation of composite emissions factor uncertainty 
ratios from the uncertainty ratio values determined for the individual emissions factor categories. 
The objective is to develop emissions factor uncertainty ratios that can be used as a tool for 
taking uncertainty into account. Presented in this report are the approaches considered, the 
procedures used, and the results of the analyses. We considered two approaches to developing 
composite uncertainty ratios. The first approach looked at clustering (categorizing) the 
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individual uncertainty ratios based on the similarity of the distribution of the emissions factor 
data as measured by some statistical parameters (e.g., uncertainty ratios for emissions factors 
where the data exhibit a similar degree of skewness would be clustered). The second approach 
looked at clustering the individual uncertainty ratios based on an engineering/scientific property 
related to the emissions factor (e.g., similar pollutants [gaseous vs. PM], controlled vs. 
uncontrolled emissions, type of process, etc.). The following sections discuss each of these two 
approaches in more detail. 

One approach to developing composite uncertainty ratios is to combine the uncertainty 
ratio values based on similarity of the emissions factor dataset. Table 4-5 shows the summary 
statistics of the emissions data from all the emissions factor categories analyzed in this study. 
The statistics shown in the table include n (sample size = number of emissions tests), mean, 
range of the data (minimum value minus maximum value), standard deviation, skewness, and the 
CV. The statistics suggest a considerable variability in mean values, the range of the data, and 
the standard deviations. In cases where a comparison criteria is needed for data with varying 
descriptive statistics, it is recommended to use statistics that measure the asymmetry and 
variation of the dataset. We included the CV and the skewness statistics for comparison of the 
data. 

The skewness statistic provides a measure of the asymmetry of the data, while the CV 
statistic provides a relative measure of the dispersion of the data. Equation 4-1 defines the 
skewness statistic. 

3
1

3

)1(

)(

sn

yy
skewness

n

i
i

where: 
skewness = measure of the asymmetry of the data 
s = the standard deviation of the data 
yi = the measurement in the dataset 
y  = mean of the data 

n = number of values in the dataset. 
 

Negative values for the skewness statistic indicate the data are skewed left while positive 
values indicate the data are skewed right. A skewness value of zero denotes a symmetric 
distribution around the mean (i.e., the normal distribution). A skewed left distribution is a 
distribution that has a left tail heavier than the right tail. Similarly, a skewed right distribution is 
a distribution with a right tail heavier than the left tail. Some measurements (such as these 
pollutant measurements) have a lower bound (zero) and are expected to be skewed right. 

The CV statistic provides a relative measure of data dispersion compared to the mean; 
because the CV is scale free, it is particularly useful in making comparisons between different 
data. Equation 4-2 defines the CV statistic. 

(Eq. 4-1) 



Emissions Factor Uncertainty Assessment 

4-6

y

s
CV  

where: 
CV = coefficient of variation  

  s = the standard deviation of the data 
 y  = the mean of the data. 

When the CV value is small, we expect the data scatter compared to the mean to be 
small. On the other hand, if the CV value is large, then we expect the amount of variation with 
respect to the mean to be large. The squared CV (CV2), is an increasing function of CV; 
therefore, it has the same properties of CV and is used in this document to characterize the 
uncertainty ratios.   
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Exploratory analysis of the emissions factor data and values of the uncertainty ratios 
showed that datasets with similar skewness and CV values resulted in similar emissions factor 
uncertainty ratios. This conclusion is not surprising given the statistics used to estimate the 
parameters of the two distributions (Weibull and log-normal) that best fit the pollutants and to 
generate the uncertainty ratios are functions of the CV. The CV2 was selected as the statistic to 
use to categorize the uncertainty ratio values. Table 4-6 presents the uncertainty ratio values 
listed by ascending (increasing) CV2. The uncertainty ratios were grouped by CV2 range 
(e.g., CV2 < 0.5, 0.5 < CV2 < 1.0). We calculated the average uncertainty ratio values for each 
CV2 range selected and they are presented (in bold type) in Table 4-6. These average uncertainty 
ratio values represent potential composite uncertainty ratio values. For each of the CV2 
categories, the uncertainty ratio value stabilizes when n  10. 

While analyzing the data for the CV2 analysis and categorization, some data in the 
emissions factor datasets appeared to be potential outliers (either very large or very small 
observations). Given that the mean and the CV2 statistics are affected by the presence of outliers 
or extreme observations, we performed an outlier check in the emissions factor datasets. We 
examined the existence of potential outliers using a rule of thumb to specify outliers based on the 
inter-quartile-range (IQR), which is a measure of the spread of the data. The IQR is defined as 
the third quartile (q3) minus the first quartile (q1). It was used to flag observations that lie 
outside of q1-(3*IQR) and q3+(3*IQR) as problematic outliers. We identified a number of 
datasets with outliers, most notably the HAPs. Fifteen of the 18 HAP emissions factors had at 
least one potential outlier in the dataset. Because these emissions factors account for a significant 
portion of the HAP dataset, we could not exclude these uncertainty ratios from the analysis. One 
possible approach is to go back to the original emissions factor dataset, recalculate the emissions 
factors without the outliers, and then repeat the statistical analyses on the revised emissions 
factor data to calculate the uncertainty ratios. However, the outlier data points were included in 
the original emissions factor development analysis because they were believed to be 
representative of the source category, and they are included in the emissions factor to be 
adjusted. Consequently, as a practical matter, it may not be appropriate to exclude them from the 

(Eq. 4-2)
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uncertainty ratio analysis. The effect of potential outliers would be seen in both the estimation of 
the parameters for the PDF assumed and the construction of the emissions factor uncertainty 
ratios. 

Property Related to the Emissions Factor 

A second approach to developing composite emissions factor uncertainty ratios is to 
combine the uncertainty ratios based on an engineering or scientific property related to the 
factors (e.g., controlled vs. uncontrolled factors, particulate vs. gaseous pollutants, emissions 
resulting from similar process operations, such as combustion, material handling, coating 
operations). One of the objectives of this study is to develop uncertainty ratios that can easily be 
applied on a broad basis; developing factors based on the type of process operations would result 
in an increased number of uncertainty ratios and would further complicate matters.  

We categorized the uncertainty ratios by pollutant type. Furthermore, where both controlled and 
uncontrolled data are available, we calculated separate composite uncertainty ratios for 
controlled and uncontrolled factors. Table 4-7 presents the emissions factor uncertainty ratios 
sorted based on pollutant as follows: HAP; PM-condensable; PM-filterable, controlled; PM-
filterable, uncontrolled; and gaseous criteria pollutants. We determined composite emissions 
factor uncertainty ratios for each category of pollutant by calculating the mean value. Table 4-8 
summarizes the composite emissions factor uncertainty ratios by pollutant. As previously 
discussed and as indicated in Table 4-8, throughout the analyses conducted for this study, we 
calculated uncertainty ratios for different values of n including n = 1, n = 3, n = 5, n = 10, n = 20, 
and n = 25. For each of the individual pollutant categories, the uncertainty ratio values nearly 
stabilize when n is 10 or greater. Furthermore, the composite uncertainty ratios for n = 5 and 
n = 10 are similar. Consequently, to further simplify the application of emissions factor 
uncertainty ratios, we recommend providing fewer uncertainty ratios that apply to a broader n 
range. Our recommendation is to provide composite uncertainty ratios, as follows: 

Composite factor for application when  Based on factor for 
 n < 3 n = 1 
 3 < n < 10 n = 3 
 10 < n < 25 n = 10 
 n > 25 n = 25 
 

Tables 4-9 through 4-13 summarize the recommended composite emissions factor 
uncertainty ratios for HAP; PM-condensable; PM-filterable, controlled; PM- filterable, 
uncontrolled; and gaseous criteria pollutants, respectively.  

4.3 Normalized Monte Carlo Sampling Distribution of Emissions Factors 
(Means) from the Population  

4.3.1 Summary of the Uncertainty Ratios by Pollutant  

This section presents and discusses the normalized sampling distribution of emissions 
factors (means) obtained from the Monte Carlo techniques applied to the hypothetical 
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population. This statistical analysis was conducted on all 44 AP-42 emissions factors, as 
described in Section 3.2.2. Table 4-14 presents the (selected) percentiles for the normalized 
distributions for selected sample sizes n, listed by pollutant and by air pollution control device, 
calculated for all 44 emissions factors from the four datasets. Observe that each normalized 
sampling distribution can be considered as the sampling distribution of the emissions factor 

the population parameter (the uncertainty ratio value for the population mean). A 95 percent 
confidence interval for the uncertainty ratio to the mean has endpoints equal to the 2.5 and 97.5 
percentiles of the normalized sampling distribution. Similarly, a 90 percent confidence interval 
has endpoints equal to the 5th and 95th percentiles of the normalized sampling distribution, and 
the 98 percent confidence interval has endpoints equal to the 1st and 99th percentiles of the 
normalized sampling distributions. Observe that the confidence intervals are centered on 1. 
These endpoints will define the lower and upper values for the uncertainty ratio if the goal is to 
target the mean of the hypothetical distribution. When these endpoints (uncertainty ratios) are 
multiplied by the emissions factor, the results are confidence intervals for the true emissions 
factor. The percentiles and n values selected for presentation in Table 4-14 were selected for 
comparison to the percentiles presented for the boundary statistic analyses (approach presented 
in Section 4.2). Appendix E presents the data for additional percentiles of the distributions for n 
= 1 to n = 30. One reviewer suggested reporting the 2.5 and 97.5 percentiles because these 
percentiles define the 95th confidence interval, which is a commonly used confidence interval. 
These percentiles were not calculated for the emissions factors uncertainty ratios, and they have 
not been reported for the normalized sampling distributions at this time.  

Because these uncertainty ratios are based on estimating the uncertainty around the mean, 
the uncertainty ratios are smaller than the factors calculated (and presented in Section 4.2) for 
targeting selected boundary statistics of the population. As expected, the uncertainty ratios 
decrease with increasing sample size, n. The HAP and the PM-condensable emissions factors 
exhibit the greatest variation considering n value, and the largest uncertainty ratios, in general. 
Overall, however, these uncertainty ratios (intervals about the mean) do not exhibit nearly as 
much variation as the uncertainty ratios calculated to target the boundary statistics. Again, this is 
not unexpected given that the uncertainty ratios times the AP-42 emissions factor represent the 
confidence limits around the population mean (true emissions factor). Table 4-15 present the 
data organized by increasing CV2 value.  

4.3.2 Composite Uncertainty Ratios  

For comparison purposes, composite uncertainty ratios were calculated for the five 
categories of pollutants: HAPs, condensable PM, controlled filterable PM, uncontrolled filterable 
PM, and gaseous criteria pollutants. Table 4-16 presents the composite uncertainty ratios by 
pollutant category. These values were further composited by n value (i.e., n < 3, 3 < n < 10, 10 < 
n < 25, and n > 25); these results are presented in Tables 4-17 through 4-21.  
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4.4 Comparison of Results from Different Analyses  

We conducted two different statistical analyses to develop emissions factor uncertainty 
ratios. The results of the two different analyses appear in previous sections. This section briefly 
addresses similarities and differences among the results, as well as how the approaches 
complement each other. Also, we present a technique for using the two approaches to 
complement each other for noninventory and inventory uses.  

The first statistical approach targets boundary statistics of the hypothetical population 
and is appropriate when applying emissions factors to a single emissions unit. The second 
statistical approach estimates uncertainty about the mean of the population and is more 
appropriate for uses of emission factors for many identical emissions units in an area. As 
expected, uncertainty ratios calculated using the first approach are greater because they target a 
boundary statistic of the hypothetical population for a single measurement, whereas the second 
approach calculates an uncertainty ratio that provides uncertainty measures (confidence 
intervals) for the mean. The difference in uncertainty ratio values by the two approaches is 
greater for a smaller n. That is, the sample size, n, has a greater impact on the uncertainty ratio 
by using the first approach. Although in both cases, the uncertainty ratio decreases as n 
increases. For example, for HAPs, the composite emissions factor uncertainty ratios to target the 
90th percentile are 7.7 and 2.4 for n < 3 and n > 25. By comparison, for the second approach, the 
uncertainty ratios based on the 90th percentile of the normalized distribution of the emissions 
factor mean are 2.2 for n < 3 and 1.5 for n > 25, respectively. This pattern holds for all of the 
uncertainty ratios.  

The uncertainty ratios calculated by the first approach target a boundary statistic for 
application to a single emissions unit while the uncertainty ratios calculated by the second 
approach target the uncertainty about the mean value of a large sample. Some situations do not 
perfectly fall into one of these two categories, making it unclear which uncertainty ratio is more 
appropriate. This is particularly true when estimating emissions from a small number of similar 
sources (emissions units), for example, when estimating the total emissions from a facility with 
three similar boilers. Another example is the situation where a regulatory agency is estimating 
emissions from multiple facilities; for example, five facilities in a local region or 25 facilities in 
the state. The uncertainty ratio values for situations involving a small number of emissions units 
should fall between the values calculated by the two approaches. 

One approach to addressing the type of situations described above is to start with the 
emissions factor uncertainty ratio and apply a correction to reduce the uncertainty ratio for 
situations where emissions from multiple emissions units are being estimated. A review of the 
data from the first statistical approach (boundary statistic) indicates the uncertainty ratio for the 
mean as the target statistic approaches 1 for all pollutants, with the exception of uncontrolled 
HAPs when n > 10; the uncertainty ratio is 1.1 or less for n > 10. Therefore, a practical approach 
is to state that for more than 10 sources (emissions units), the uncertainty ratio value based on 
the distribution about the mean (i.e., the second statistical approach) can be used. We calculated 
the difference between the uncertainty ratios determined by the two statistical approaches for 
each percentile and it is called the correction factor (CF) for multiple emissions units (EU). 
Table 4-22 presents the CFs. A linear reduction in the emissions factor uncertainty ratio is 
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assumed for one to 10 emissions units such that the uncertainty ratio based on the boundary 
statistic is reduced by 1/10 of the CF for each emissions unit greater than one up to a maximum 
of 10 emissions units. For 11 or more emissions units, the entire CF is subtracted from the 
emissions factor uncertainty ratio; thus for 11 or more emissions units, the emissions factor 
uncertainty ratio is equivalent to the uncertainty ratio determined by the normalized sample 
distribution about the mean. The equation for correcting the emissions factor uncertainty ratio for 
multiple emissions units follows. 

If there are at least two, but less than 11, similar EUs, the following equation is used to 
calculate the emissions factor uncertainty ratio: 

1EUCF
10

1

EF

EF statistictarget
ratioyuncertaintEF  

 
where 

EFtarget statistic  =  Target population value of the emissions distribution, hereafter referred 
to as the target statistic (e.g., 95th percentile), in units of the AP-42 
emissions factor 

EF  =  Emissions factor, as presented in AP-42, in units of the AP-42 emissions 
factor 

CF  =  Correction factor for multiple EUs (see values in Table 4-22) 
EU  =  Number of emissions units. 
 
If there are 11 or more similar EUs, the following equation is used to calculate the 

emissions factor uncertainty ratio: 

CF
EF

EF statistictarget
ratioyuncertaintEF  

 
where 

EFtarget statistic  =  Target population value of the emissions distribution, hereafter 
referred to as the target statistic (e.g., 95th percentile), in units of the 
AP-42 emissions factor 

EF  =  Emissions factor, as presented in AP-42, in units of the AP-42 
emissions factor 

CF  =  Correction factor for multiple EUs (see values in Table 4-22). 
 
4.5 Relative Accuracy Assessment 

To assess the performance of the composite emissions factor uncertainty ratios, we 
compared the calculated emissions factor target statistics to the hypothetical population values of 
the target statistic for each emissions factor evaluated during the study. The following equation 
was used to calculate relative accuracy: 

(Eq. 4-3)

(Eq. 4-4)
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RA = (EFtarget statistic - HPtarget statistic)/HPtarget statistic  100  (Eq. 4-5) 
 
where 

RA = Relative accuracy 
EFtarget statistic  = Target population value of the emissions distribution, hereafter 

referred to as the target statistic (e.g., 95th percentile), in units of the 
AP-42 emissions factor 

HPtarget statistic = Actual value of the hypothetical population for the target statistic of 
interest for the emissions factor (e.g., 95th percentile of the 
hypothetical population distribution). 

  
And 
 
 EFtarget statistic  =  EF * EFuncertainty ratio  (Eq. 4-6) 
 
where 
 EFuncertainty ratio =  Composite uncertainty ratio for the pollutant and target statistic of 

interest 
 

Given 
a) Published AP-42 emissions factor = 0.198 lb/ton 
b) Number of tests that the published emissions factor is based upon, n = 14  
c) 95th percentile of the hypothetical population, HP95th = 0.67 lb/ton 
d) Composite emissions factor uncertainty ratio for HAPs, where the target statistic 

is the 95th percentile and 10 < n <25 = 4.3 (per Table 4-9).  
 

Then 
EFtarget statistic = (EF) * (EFuncertainty ratio)  
EF95th percentile =  0.198 lb/ton * 4.3 
  =  0.85 lb/ton 

and 
RA =  (EFtarget statistic - HPtarget statistic)/HPtarget statistic * 100 
 = (0.85 - 0.67)/0.67 * 100 
 =  27% 

Similarly for the target statistic of the 90th percentile for the same pollutant:  

Given 
 a) Published AP-42 emissions factor = 0.198 lb/ton 
 b) Number of tests that the published emissions factor is based upon, n = 14  
 c) 90th percentile of the hypothetical population, HP90th = 0.49 lb/ton 
 d) Composite emissions factor uncertainty ratio for HAPs, where the target statistic 

is the 90th percentile and 10  n <25, = 2.7 (per Table 4-9). 
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Then 
EFtarget statistic =  (EF) * (EFuncertainty ratio) 
EF90th percentile =  0.198 lb/ton * 2.7 
 =  0.53 lb/ton 

and 
RA  =  (EFtarget statistic - HPtarget statistic)/HPtarget statistic * 100 
  = (0.53 - 0.49)/0.49 * 100 
  =  10% 

In these two examples, the emissions factor target statistic calculated using the composite 
emissions factor uncertainty ratio overestimates the 90th and 95th percentiles by 10 and 27 
percent, respectively. 

Table 4-23 summarizes the relative accuracy results for each emissions factor evaluated 
during this study for the 10th, 25th, median, 75th, 90th, and 95th target statistics. The average, 
median, minimum, and maximum relative accuracy values are presented for each pollutant type 
for which composite emissions factors were developed (e.g., HAPs, PM-condensable, PM-
filterable, controlled; PM-filterable, uncontrolled; and gaseous criteria pollutants).  

With the exception of PM-condensable, the composite emissions factor uncertainty ratios 
overestimate the target statistics, on average. In particular, the percentiles below the median 
(e.g., the 10th and 25th percentiles) are overestimated by the composite emissions factor 
uncertainty ratios. Appendix H presents the complete relative accuracy calculation results. 
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and Probability Density  

p-Values 

Pollutant Control Industry/Source 
Weibull 
Density 

Gamma 
Density 

Log-normal 
Density 

Acetaldehyde UNC/PM Wood Combustion 0.049 0.000 0.156 

Arsenic SD/FF Refuse Combustion, Mass Burn 1.00 0.000 1.00 

Arsenic UNC/PM Wood Combustion 0.863 0.000 0.651 

Benzene FF Asphalt, Drum Mix 1.00 0.000 1.00 

Benzene UNC/PM Wood Combustion 0.701 0.000 0.915 

Cadmium SD/ESP Refuse Combustion, Mass Burn 1.00 0.000 1.00 

Cadmium UNC/PM Wood Combustion 0.059 0.000 0.000 

Carbon monoxide UNC Refuse Combustion, Mass Burn 1.00 0.000 1.00 

Carbon monoxide UNC Wood Combustion 0.998 0.000 0.997 

Chromium UNC/PM Wood Combustion 0.33 0.000 0.027 

Formaldehyde FF Asphalt, Drum Mix 0.994 0.000 1.00 

Formaldehyde UNC/PM Wood Combustion 0.447 0.000 0.696 

Hydrogen 
chloride 

UNC Refuse Combustion 1.00 0.000 1.00 

Hydrogen 
chloride 

SD/FF Refuse Combustion, Mass Burn 0.308 0.005 0.179 

Lead SD/ESP Refuse Combustion, Mass Burn 1.00 0.000 1.00 

Lead UNC/PM Wood Combustion 0.885 0.000 0.288 

Mercury SD/FF Refuse Combustion, Mass Burn 0.052 0.000 0.107 

Mercury UNC/PM Wood Combustion 0.349 0.000 0.059 

Nickel SD/FF Refuse Combustion, Mass Burn 0.071 0.000 0.19 

Nickel UNC/PM Wood Combustion 0.151 0.000 0.012 

Nitrogen oxides UNC Refuse Combustion, Mass Burn 
Waterwall 

0.265 0.000 0.095 

Nitrogen oxides UNC Wood Combustion 0.004 0.000 0.214 

PM-condensable UNC Wood Combustion 0.864 0.000 0.934 

PM-condensable 
(Inorganic) 

FF Asphalt, Batch Mixer 1.00 0.000 1.00 

PM-condensable 
(Organic) 

FF Asphalt, Batch Mixer 1.00 0.000 1.00 

PM-condensable 
(Inorganic) 

WS/FF Asphalt, Drum Mixer 1.00 0.000 1.00 

PM-condensable 
(Organic) 

WS/FF Asphalt, Drum Mixer 1.00 0.000 1.00 

PM-filterable FF Asphalt, Batch Mixer 1.00 0.000 1.00 

PM-filterable FF Asphalt, Drum Mixer 1.00 0.000 1.00 

PM-filterable UNC W/OSB, Hot Press 0.074 0.000 0.484 

PM-filterable DSI/FF Refuse Combustion, Mass Burn 1.00 0.000 1.00 

(continued)
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Table 4-1. (continued) 

  p-Values 

Pollutant Control Industry/Source 
Weibull 
Density 

Gamma 
Density 

Log-normal 
Density 

PM-filterable ESP Refuse Combustion, Mass Burn 1.00 0.000 1.00 

PM-filterable SD/ESP Refuse Combustion, Mass Burn 1.00 0.000 1.00 

PM-filterable SD/FF Refuse Combustion, Mass Burn 1.00 0.000 1.00 

PM-filterable UNC Refuse Combustion, Mass Burn 0.598 0.000 0.536 

PM-filterable ESP Refuse Combustion, RDF 0.738 0.454 0.781 

PM-filterable UNC Refuse Combustion, RDF 0.902 0.000 0.927 

PM-filterable WS Wood Combustion 0.145 0.000 0.245 

PM-filterable MC Wood Combustion, Dry Wood 1.00 0.000 1.00 

PM-filterable UNC Wood Combustion, Dry Wood 0.92 0.000 0.982 

PM-filterable MC Wood Combustion, Wet Wood 0.707 0.000 0.305 

PM-filterable UNC Wood Combustion, Wet Wood 0.571 0.000 0.604 

Sulfur dioxide UNC Refuse Combustion 1.00 0.000 1.00 

Sulfur dioxide UNC Wood Combustion 1.00 0.000 1.00 

CDF = cumulative distribution function; DSI/FF = dry sorbent injection/fabric filter; ESP = electrostatic 
precipitator; FF = fabric filter; MC = mechanical collector (e.g., cyclone); PM = particulate matter; 
RDF = refuse-derived fuel; SD/ESP = spray dryer/electrostatic precipitator; SD/FF = spray dryer/fabric filter; 
UNC = uncontrolled; W/OSB = Waferboard/Oriented Strandboard Manufacturing; WS = wet scrubber; WS/FF = 
wet scrubber or fabric filter; UNC/PM = uncontrolled or PM control. 
 
Note: p-values larger than 0.05 suggest no statistical evidence against the agreement between the CDF of the 
pollutant data and the theoretical density function. 



Emissions Factor Uncertainty Assessment 

4-15

Table 4-2. Estimated Parameters for the Fit of the Hypothetical Distribution 

Log-normal 
Distribution 

Weibull 
Distribution 

Pollutant Control Industry/Source µ  Scale Shape 

Acetaldehyde UNC/PM Wood Combustion 9.02 1.81   

Arsenic SD/FF Refuse Combustion, Mass Burn 12.72 0.50   

Arsenic UNC/PM Wood Combustion   5.24E-06 0.37 

Benzene FF Asphalt, Drum Mix 8.13 0.59   

Benzene UNC/PM Wood Combustion 7.95 2.12   

Cadmium SD/ESP Refuse Combustion, Mass Burn 9.66 0.83   

Cadmium UNC/PM Wood Combustion   3.10E-06 0.61 

Carbon monoxide UNC Refuse Combustion, Mass Burn 1.18 0.57   

Carbon monoxide UNC Wood Combustion   0.64 1.26 

Chromium UNC/PM Wood Combustion   1.23E-05 0.52 

Formaldehyde FF Asphalt, Drum Mix 6.28 1.01   

Formaldehyde UNC/PM Wood Combustion 7.06 1.86   

Hydrogen chloride UNC Refuse Combustion   6.78 1.77 

Hydrogen chloride SD/FF Refuse Combustion, Mass Burn   0.18 0.82 

Lead SD/ESP Refuse Combustion, Mass Burn 7.12 0.82   

Lead UNC/PM Wood Combustion   2.59E-05 0.49 

Mercury SD/FF Refuse Combustion, Mass Burn 6.95 1.09   

Mercury UNC/PM Wood Combustion   1.61E-06 0.49 

Nickel SD/FF Refuse Combustion, Mass Burn 10.83 0.98   

Nickel UNC/PM Wood Combustion   1.62E-05 0.46 

Nitrogen oxides UNC Refuse Combustion, Mass Burn 
Waterwall 

  3.96 4.19 

Nitrogen oxides UNC Wood Combustion 1.66 0.53   

PM-condensable UNC Wood Combustion 4.66 1.13   

PM-condensable 
(Inorganic) 

FF Asphalt, Batch Mixer 5.26 1.62   

PM-condensable 
(Inorganic) 

WS/FF Asphalt, Drum Mixer 5.24 0.66   

PM-condensable 
(Organic) 

FF Asphalt, Batch Mixer   3.96E-03 0.91 

PM-condensable 
(Organic) 

WS/FF Asphalt, Drum Mixer 5.26 1.89   

PM-filterable FF Asphalt, Batch Mixer 4.27 1.13   

(continued)
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Table 4-2. (continued) 

Log-normal 
Distribution 

Weibull 
Distribution 

Pollutant Control Industry/Source µ  Scale Shape 

PM-filterable FF Asphalt, Drum Mixer 4.72 0.81   

PM-filterable UNC W/OSB, Hot Press 2.35 0.93   

PM-filterable DSI/FF Refuse Combustion, Mass Burn   0.23 1.13 

PM-filterable ESP Refuse Combustion, Mass Burn -2.05 0.94   

PM-filterable SD/ESP Refuse Combustion, Mass Burn 2.74 0.27   

PM-filterable SD/FF Refuse Combustion, Mass Burn 3.15 0.87   

PM-filterable UNC Refuse Combustion, Mass Burn 3.11 0.24   

PM-filterable ESP Refuse Combustion, RDF 1.00 1.81   

PM-filterable UNC Refuse Combustion, RDF 4.08 0.13   

PM-filterable WS Wood Combustion -2.76 0.09   

PM-filterable MC Wood Combustion, Dry Wood 1.27 0.40   

PM-filterable UNC Wood Combustion, Dry Wood 1.00 0.40   

PM-filterable MC Wood Combustion, Wet Wood   0.20 0.82 

PM-filterable UNC Wood Combustion, Wet Wood 1.27 0.56   

Sulfur dioxide UNC Refuse Combustion   3.88 2.1 

Sulfur dioxide UNC Wood Combustion 4.83 1.63   

DSI/FF = dry sorbent injection/fabric filter; ESP = electrostatic precipitator; FF = fabric filter; MC = mechanical 
collector (e.g., cyclone); PM = particulate matter; RDF = refuse-derived fuel; SD/ESP = spray dryer/electrostatic 
precipitator; SD/FF = spray dryer/fabric filter; UNC = uncontrolled; W/OSB = Waferboard/Oriented Strandboard 
Manufacturing; WS = wet scrubber; WS/FF = wet scrubber or fabric filter; UNC/PM = uncontrolled or PM 
control. 
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Table 4-3. Emissions Factor Uncertainty Ratios for Carbon Monoxide (from Wood Residue 
Combustion), by Number of Tests (n) and Target Statistic  

Median 

Target Statistic 
n 5th Percentile 10th Percentile Median Mean 90th Percentile 95th Percentile 

1 0.19 0.30 1.0 1.2 2.2 2.7 

3 0.17 0.27 0.91 1.0 2.0 2.4 

5 0.16 0.26 0.89 1.0 1.9 2.3 

10 0.16 0.26 0.88 1.0 1.9 2.3 

15 0.16 0.26 0.88 1.0 1.9 2.3 

20 0.16 0.26 0.88 1.0 1.9 2.3 

25 0.16 0.26 0.88 1.0 1.9 2.3 

Mean 

n 5th Percentile 10th Percentile Median Mean 90th Percentile 95th Percentile 

1 0.37 0.60 2.0 2.3 4.5 5.4 

3 0.19 0.30 1.0 1.2 2.3 2.7 

5 0.18 0.28 0.96 1.1 2.1 2.5 

10 0.17 0.27 0.91 1.0 2.0 2.4 

15 0.16 0.26 0.90 1.0 2.0 2.4 

20 0.16 0.26 0.90 1.0 2.0 2.4 

25 0.16 0.26 0.89 1.0 1.9 2.3 

95th Percentile 

n 5th Percentile 10th Percentile Median Mean 90th Percentile 95th Percentile 

1 1.0 1.6 5.5 6.3 12 14 

3 0.36 0.58 2.0 2.3 4.3 5.2 

5 0.29 0.47 1.6 1.8 3.5 4.2 

10 0.24 0.38 1.3 1.5 2.8 3.4 

15 0.22 0.35 1.2 1.4 2.6 3.1 

20 0.21 0.34 1.1 1.3 2.5 3.0 

25 0.20 0.32 1.1 1.3 2.4 2.9 

n = number of emissions tests. 























Emissions Factor Uncertainty Assessment 

 4-28 

Table 4-9. Composite Emissions Factor Uncertainty Ratios  
Based on Boundary Statistics for HAP 

Table 4-10. Composite Emissions Factor Uncertainty Ratios 
Based on Boundary Statistics for PM-Condensable  

Number of Emissions Tests Used to Determine AP-42 Emissions Factor 

Target Statistic n < 3 3 < n < 10 10 < n < 25 n > 25 

10th Percentile 0.2 0.2 0.2 0.1 

25th  Percentile 0.5 0.3 0.3 0.3 

Median 1 0.7 0.6 0.6 

Mean  2.0 1.4 1.1 1.1 

75th Percentile 2.2 1.5 1.3 1.2 

90th Percentile 4.4 3.0 2.5 2.4 

95th Percentile 6.9 4.7 3.9 3.6 

PM = particulate matter.   

Table 4-11. Composite Emissions Factor Uncertainty Ratios  
Based on Boundary Statistics for PM-Filterable, Controlled  

Number of Emissions Tests Used to Determine AP-42 Emissions Factor 

Target Statistic n < 3 3 < n < 10 10 < n < 25 n > 25 

10th Percentile 0.4 0.3 0.3 0.3 

25th Percentile 0.6 0.5 0.5 0.5 

Median 1 0.8 0.8 0.8 

Mean 1.4 1.2 1.1 1.0 

75th Percentile 1.7 1.4 1.3 1.2 

90th Percentile 2.9 2.3 2.1 2.0 

95th Percentile 3.9 3.1 2.8 2.7 

PM = particulate matter. 

Number of Emissions Tests Used to Determine AP-42 Emissions Factor 
Target Statistic n < 3 3 < n < 10 10< n <25 n > 25 

10th Percentile 0.2 0.1 0.1 0.1 

25th Percentile 0.4 0.3 0.2 0.2 

Median 1.0 0..6 0.5 0.5 

Mean 3.4 1.6 1.2 1.1 

75th Percentile 2.9 1.5 1.2 1.1 

90th Percentile 7.7 3.6 2.7 2.4 

95th Percentile 13.4 6.0 4.3 3.9 

HAP = hazardous air pollutant. 
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Table 4-12. Composite Emissions Factor Uncertainty Ratios 
Based on Boundary Statistics for PM-Filterable, Uncontrolled  

Number of Emissions Tests Used to Determine AP-42 Emissions Factor 

Target Statistic n < 3 3 < n < 10 10 < n < 25 n > 25 

10th Percentile 0.5 0.5 0.4 0.4 

25th Percentile 0.7 0.6 0.6 0.6 

Median 1 0.9 0.9 0.9 

Mean 1.2 1.1 1 1.0 

75th Percentile 1.5 1.3 1.3 1.2 

90th Percentile 2.2 1.9 1.8 1.8 

95th Percentile 2.7 2.3 2.2 2.2 

PM = particulate matter. 

Table 4-13. Composite Emissions Factor Uncertainty Ratios 
Based on Boundary Statistics for Gaseous Criteria Pollutants  

Number of Emissions Tests Used to Determine AP-42 Emissions Factor 

Target Statistic n < 3 3 < n < 10 10 < n < 25 n > 25 

10th Percentile 0.3 0.3 0.3 0.3 

25th Percentile 0.6 0.5 0.5 0.5 

Median 1 0.8 0.8 0.8 

Mean   1.8 1.3 1.1 1.0 

75th Percentile 1.9 1.4 1.3 1.2 

90th Percentile 3.5 2.5 2.1 2.0 

95th Percentile 5.4 3.6 3.0 2.8 















Emissions Factor Uncertainty Assessment 

 4-36 

Table 4-17. Composite Emissions Factor Uncertainty Ratios Based on Normalized 
Sampling Distribution of Emissions Factor (Mean) for HAP  

Number of Emissions Tests Used to Determine AP-42 Emissions Factor 
Distribution Statistic n < 3 3 < n < 10 10 < n < 25 n > 25 

10th Percentile 0.1 0.3 0.5 0.6 

25th Percentile 0.2 0.4 0.6 0.7 

Median 0.5 0.7 0.8 0.9 

Mean 1.0 1.0 1.0 1.0 

75th Percentile 1.0 1.2 1.2 1.2 

90th Percentile 2.2 2.0 1.7 1.5 

95th Percentile 3.5 2.8 2.1 1.7 

HAP = hazardous air pollutant. 

Table 4-18. Composite Emissions Factor Uncertainty Ratios Based on Normalized 
Sampling Distribution of Emissions Factor (Mean) for PM-Condensable  

Number of Emissions Tests Used to Determine AP-42 Emissions Factor 
Distribution Statistic n < 3 3 < n < 10 10 < n < 25 n > 25 

10th Percentile 0.1 0.3 0.5 0.6 

25th Percentile 0.3 0.4 0.6 0.8 

Median 0.5 0.7 0.9 0.9 

Mean 1.0 1.0 1.0 1.0 

75th Percentile 1.1 1.2 1.2 1.2 

90th Percentile 2.2 1.9 1.6 1.4 

95th Percentile 3.3 2.6 2.0 1.6 

PM = particulate matter. 

Table 4-19. Composite Emissions Factor Uncertainty Ratios Based on Normalized 
Sampling Distribution of Emissions Factor (Mean) for PM-Filterable, Controlled  

Number of Emissions Tests Used to Determine AP-42 Emissions Factor 
Distribution Statistic n < 3 3 < n < 10 10 < n < 25 n > 25 

10th Percentile 0.3 0.5 0.7 0.8 

25th Percentile 0.4 0.6 0.8 0.8 

Median 0.7 0.8 0.9 1.0 

Mean 1.0 1.0 1.0 1.0 

75th Percentile 1.2 1.2 1.1 1.1 

90th Percentile 2.0 1.7 1.4 1.3 

95th Percentile 2.7 2.1 1.7 1.4 

PM = particulate matter. 
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Table 4-20. Composite Emissions Factor Uncertainty Ratios Based on Normalized 
Sampling Distribution of Emissions Factor (Mean) for PM-Filterable, Uncontrolled 

Number of Emissions Tests Used to Determine AP-42 Emissions Factor 
Distribution Statistic n < 3 3 < n < 10 10 < n < 25 n > 25 

10th Percentile 0.4 0.6 0.7 0.8 

25th Percentile 0.6 0.7 0.8 0.9 

Median 0.8 0.9 1.0 1.0 

Mean 1.0 1.0 1.0 1.0 

75th Percentile 1.2 1.2 1.1 1.1 

90th Percentile 1.8 1.5 1.3 1.2 

95th Percentile 2.3 1.8 1.5 1.3 

PM = particulate matter. 

Table 4-21. Composite Emissions Factor Uncertainty Ratios Based on Normalized 
Sampling Distribution of Emissions Factor (Mean) for Gaseous Criteria Pollutants  

Number of Emissions Tests Used to Determine AP-42 Emissions Factor 
Distribution Statistic n < 3 3 < n < 10 10 < n < 25 n > 25 

10th Percentile 0.4 0.5 0.7 0.8 

25th Percentile 0.5 0.7 0.8 0.9 

Median 0.8 0.9 0.9 1.0 

Mean 1.0 1.0 1.0 1.0 

75th Percentile 1.2 1.2 1.1 1.1 

90th Percentile 1.8 1.5 1.3 1.2 

95th Percentile 2.3 1.9 1.5 1.3 
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Table 4-22. Correction Factors to Account for Multiple Emissions Units  

Correction Factor 

Number of Emissions Tests Used to Determine AP-42 Emissions Factor 
Pollutant Target Statistic n < 3 3 < n < 10 10 < n < 25 n > 25 

10th Percentile 0.05 -0.13 -0.34 -0.49 

25th Percentile 0.15 -0.14 -0.37 -0.51 

Median 0.55 -0.05 -0.32 -0.42 

Mean 2.37 0.62 0.20 0.09 

75th Percentile 1.91 0.38 -0.01 -0.04 

90th Percentile 5.48 1.63 1.00 0.97 

HAP 

95th Percentile 9.92 3.21 2.22 2.17 

10th Percentile 0.10 -0.13 -0.35 -0.50 

25th Percentile 0.22 -0.11 -0.35 -0.48 

Median 0.50 0.00 -0.27 -0.36 

Mean 0.98 0.37 0.13 0.06 

75th Percentile 1.11 0.34 0.07 0.03 

90th Percentile 2.24 1.11 0.89 0.92 

PM-condensable  

95th Percentile 3.51 2.04 1.87 1.96 

10th Percentile 0.10 -0.13 -0.33 -0.44 

25th Percentile 0.17 -0.10 -0.29 -0.38 

Median 0.30 -0.01 -0.16 -0.21 

Mean 0.43 0.16 0.06 0.03 

75th Percentile 0.52 0.20 0.12 0.12 

90th Percentile 0.89 0.63 0.64 0.71 

PM-filterable, 
controlled 

95th Percentile 1.22 1.03 1.13 1.27 

10th Percentile 0.08 -0.12 -0.29 -0.38 

25th Percentile 0.14 -0.08 -0.22 -0.29 

Median 0.21 -0.00 -0.09 -0.13 

Mean 0.21 0.07 0.03 0.01 

75th Percentile 0.30 0.14 0.13 0.15 

90th Percentile 0.38 0.37 0.48 0.55 

PM-filterable, 
uncontrolled 

95th Percentile 0.41 0.54 0.77 0.89 

10th Percentile -0.01 -0.24 -0.42 -0.51 

25th Percentile 0.05 -0.20 -0.35 -0.42 

Median 0.21 -0.07 -0.19 -0.23 

Mean 0.76 0.28 0.10 0.05 

75th Percentile 0.67 0.26 0.14 0.13 

90th Percentile 1.75 0.94 0.76 0.78 

Gaseous criteria 
pollutants 

95th Percentile 3.05 1.75 1.48 1.48 

HAP = hazardous air pollutant; PM = particulate matter. 
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Table 4-23. Relative Accuracy of Calculated Emissions Factors Target Statistic Compared 
to Hypothetical Population for Selected Target Statistics  

 

Pollutant  
10th 

Percentile 
25th

Percentile Median 
75th 

Percentile 
90th 

Percentile 
95th 

Percentile 

HAP Average 2886% 447% 101% 35% 26% 35% 

 Median 323% 72% 6% 3% 20% 27% 

 Min -71% -61% -47% -16% -16% -24% 

 Max 23060% 2773% 514% 261% 129% 128% 

PM-condensable Average 64% 58% 14% -4% -6% -3% 

 Median 107% 22% 8% -2% -5% -4% 

 Min -67% -35% -16% -23% -51% -62% 

 Max 168% 158% 49% 8% 46% 70% 

PM-filterable, 
controlled 

Average 123% 59% 20% 0% 5% 12% 

 Median 45% 42% 21% -2% -5% -2% 

 Min -52% -33% -16% -15% -54% -67% 

 Max 594% 276% 77% 21% 66% 100% 

PM-filterable 
uncontrolled 

Average 16% 19% 21% 22% 31% 38% 

 Median -27% -14% 0% 23% 24% 24% 

 Min -49% -30% -4% 5% 4% 3% 

 Max 200% 158% 105% 46% 62% 88% 

Gaseous criteria 
Pollutants 

Average 103% 53% 19% 2% 16% 33% 

 Median -20% -9% -3% -1% 18% 43% 

 Min -54% -39% -20% -14% -20% -41% 

 Max 672% 370% 151% 26% 50% 97% 

HAP = hazardous air pollutant; PM = particulate matter. 
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